Preparation of epoxy/MgO and epoxy/SiO2 nanocomposites is
studding. The nano composites were processed by different nano
fillers concentrations (0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.07 and
0.1 wt%). Epoxy resin and nanocomposites containing different
shape nano fillers of (MgO:SiO2 composites), are shear mixing with
ratio 1:1,with different nano hybrid fillers concentrations (0.025,
0.05, 0.1, 0.15, 0.2 and 0.25 wt%) to preparation of epoxy/(MgOSiO2)
hybrid nanocomposites. Experimental tests results indicate that
the composite materials have significantly higher modulus of
elasticity than the matrix material but the hybrid nanocomposites
have lower modulus of elasticity. The wear rate was decreased in
nanocomposites and hybrid nanocomposites than the matrix material
and fatigue resistance was increased in nanocomposites and hybrid
nanocomposites than the matrix material.
SiO2 nanostructure is synthesized by the Sol-Gel method and thin films are prepared using dip coating technique. The effect of laser densification is studied. X-ray Diffraction (XRD), Fourier Transformation Infrared Spectrometer (FTIR), and Field Emission Scanning Electron Microscopy (FESEM) are used to analyze the samples. The results show that the silica nanoparticles are successfully synthesized by the sol-gel method after laser densification. XRD patterns show that cristobalite structure is observed from diode laser (410 nm) rather than diode laser (532 nm). FESEM images showed that the shape of nano silica is spherical and the particles size is in nano range (? 100 nm). It is concluded that the spherical nanocrystal structure of silica
... Show MoreModern asphalt technology has adopted nanomaterials as an alternative option to assert that asphalt pavement can survive harsh climates and repeated heavy axle loading during service life and prolong pavement life. This work aims to elucidate the behavior of the modified asphalt mixture fracture model and assess the fatigue and Rutting performance of Hot Mix Asphalt (HMA) mixes using the outcomes of indirect Tensile Strength (IDT), Semicircular bend (SCB) and rutting resistance; for this, a single PG (64−16) nanomodified asphalt binder with 5 % SiO2 and TiO2 have been investigated through a series of laboratory tests, including: Resilient modulus, Creep compliance, and tensile strength, SCB, and Flow Number (FN) to study their potential
... Show MoreThis paper focuses firstly on the production of monomers bis (2-hydroxyethyl) terephthalate (BHET) and oligomers by using two different form of MgO light active and Nano Magnesium oxide with different weight ratio (0.15, 0.25 and 0.5) by using chemical recycling glass condenser at 190 ˚C. The second purpose is to study the effect of catalyst ratio, time of reaction and yield of products of the product. Elemental analysis for Carbon –Hydrogen and Nitrogen (CHN), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) have been investigated. Results indicated the catalytic activity was found to correlate with surface area; however, LA MgO has shown an exceptional activity, still it is h
... Show MoreThe work include synthesis of nanocomposites (X / S / Ag) based on blend from Xanthan gum / sodium alginate polymers (X / S) with different loading of synthesized silver nanoparticales (0.01, 0.03 and 0.05 wt%) were added to the blend. The silver nanoparticles were prepared by reduction method and were characterized and analyzed using X-ray diffraction (XRD) and Atomic force microscope (AFM). XRD study showed the presence nanoparticle of silver with crystalline nature and face-centered cubic (FCC) structure and an average size of nanoparticles ranging from 32 to 37 nm. The surface study was performed using AFM which showed a fairly uniform shape to the nanocomposites and a spherical nature for the silver nanoparticles. The nanocomposite exh
... Show MoreThis study included prepared samples of epoxy reinforced by the novolac , aluminum , glass powder and epoxy reinforced by aluminum , glass powder and epoxy alone .They are used as reinforced materials of volum fraction amounting 40% . The mechanical properties inclouded ( tensile , compressive and wear) where the wear test inclouded different applied loads (5,10,15) . From the results showed the epoxy reinforced by aluminum and glass powder has higher compressive strength (56.91) Mpa and higher tensile strength (132.2) Mpa .But the epoxy alone has higher wear rate and the epoxy reinforced by aluminum and glass powder which have higher elasticity of modulus from the tensile test (315.7) Mpa
Thin films ZrO2: MgO nanostructure have been synthesized by a radio frequency magnetron plasma sputtering technique at different ratios of MgO (0,6, 8 and 10)% percentage to be used as the gas sensor for nitrogen dioxide NO2. The samples were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and sensing properties were also investigated. The average particle size of all prepared samples was found lower than 33.22nm and the structure was a monoclinic phase. The distribution of grain size was found lower than36.3 nm and uninformed particles on the surface. Finally, the data of sensing properties have been discussed, where the
... Show MoreThe Fylex extract exert a high inhibition effect against A . flavus growth on PDA medium, as the fungus growth was completely inhibited by 100% at a concentration of 0.2 and 0.3% of studied extract, while the lowest inhibition percentage (71%) was found at a concentration of 0.1%. Whereas magnesium oxide nanoparticles showed the highest inhibition ratio of A. flavus (100%) was detected at 0.2% and the lowest inhibition ratio (81.66%) was at concentration 0.5%. Moreover, the addition of G. lucidum powder to PDA medium with a concentration of 2.5 mg increased the inhibition rate of A. flavus growth which was 54.4%, while the lowest inhibition ration (18.22%) was found at a concentration of 1000 mg. The milky liquid (brocade milk) of Calotropi
... Show MoreThe synthesis of conducting polyaniline (PANI) nanocomposites containing various concentrations of functionalized single-walled carbon nanotubes (f-SWCNT) were synthesized by in situ polymerization of aniline monomer. The morphological and electrical properties of pure PANI and PANI/SWCNT nanocomposites were examined by using Fourier transform- infrared spectroscopy (FTIR), and Atomic Force Microscopy (AFM) respectively. The FTIR shows the aniline monomers were polymerized on the surface of SWCNTs, depending on the -* electron interaction between aniline monomers and SWCNTs. AFM analysis showed increasing in the roughness with increasing SWCNT content. The AC, DC electrical conductivities of pure PANI and PANI/SWCNT nanocomposite h
... Show More