Preparation of epoxy/MgO and epoxy/SiO2 nanocomposites is
studding. The nano composites were processed by different nano
fillers concentrations (0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.07 and
0.1 wt%). Epoxy resin and nanocomposites containing different
shape nano fillers of (MgO:SiO2 composites), are shear mixing with
ratio 1:1,with different nano hybrid fillers concentrations (0.025,
0.05, 0.1, 0.15, 0.2 and 0.25 wt%) to preparation of epoxy/(MgOSiO2)
hybrid nanocomposites. Experimental tests results indicate that
the composite materials have significantly higher modulus of
elasticity than the matrix material but the hybrid nanocomposites
have lower modulus of elasticity. The wear rate was decreased in
nanocomposites and hybrid nanocomposites than the matrix material
and fatigue resistance was increased in nanocomposites and hybrid
nanocomposites than the matrix material.
This search study the effect of particle size of graphite on the mechanical and thermal properties of epoxy composites, where graphite adopted with particle sizes (45,53,75) ?m, respectively, and the percentages by weight (0,1,3,5,7,9)% for each size of this three particle sizes.Mechanical properties represented by the bending (three-point bending) and through which the conclusion is bending stress and modulus of elasticity, thermal properties were either through thermal conductivity tests.The results showed that the ratio(1%) is the maximum value of bending stress at the three particle size and the (45 ?m) is the maximum.Thermal conductivity result show is the maximum value at ratio (1%) of particle size(53 ?m)
In this study three inorganic nano additives, namely; CaCO3, Al2O3 and SiO2 were used to prepare nanocomposites of unsaturated polyester in order to modify their mechanical properties, i.e. tensile strength, elongation, impact and hardness. The results indicated that all the three additives were effective to improve the mechanical properties up to 4% by weight. The effectiveness of them follows the order : CaCO3 > Al2O3 > SiO2 This is due to their particle size in which CaCO3 (13nm), Al2O3 (20-30nm) and SiO2 (15-20nm).
This research studies the development and synthesis of blended nanocomposites filled with Titanium dioxide (TiO2). Blended nanocomposites based on unsaturated polyester resin (UPR) and epoxy resins were synthesized by reactive blending. The optimum quantity from nano partical of titanium dioxide was selected and different weight proportions 1%, 3%, 5%, and 7% ratios of new epoxy are blended with UPR resin. The dielectric breakdown strength and thermal conductivity properties of the blended nanocomposites were compared with those of the basis material (UPR and 3% TiO2).The results show good compatibility epoxy resins with the UPR resin on blending, dielectric breakdown strength values are higher while thermal conductivity values of
... Show MoreThis research studies the development and synthesis of blended nanocomposites filled with Titanium dioxide (TiO2). Blended nanocomposites based on unsaturated polyester resin (UPR) and epoxy resins were synthesized by reactive blending. The optimum quantity from nano partical of titanium dioxide was selected and different weight proportions 1%, 3%, 5%, and 7% ratios of new epoxy are blended with UPR resin. The dielectric breakdown strength and thermal conductivity properties of the blended nanocomposites were compared with those of the basis material (UPR and 3% TiO2).The results show good compatibility epoxy resins with the UPR resin on blending, dielectric breakdown strength values are higher while thermal conductivity values of
... Show MoreExperimental investigations had been done in this research to demonstrate the effect of carbon fiber and Ceramic fillers contents on the tribological behaviour of (15% volume fraction) carbon-epoxy composite system under varying volume fraction, load, time and sliding distance. The wear resistance were investigated according to ASTM G99-05standard using pin on disc machine to present the composite tribological behaviour. The influence of three ceramic fillers, granite, perlite and calcium carbonate (CaCO3), on the wear of the carbon fabric reinforced epoxy composites under dry sliding conditions has been investigated. The effect of variants in volume fraction, applied load, time and sliding distance on the wear behaviour of po
... Show MoreThis research studied the effects of modified BaTiO3 (BT) nanoparticles with coupling agent γ-APS (0.5wt. %) on the tensile and thermal conductivity of epoxy nanocomposites with respect to content (0.25, 0.5, 0.75, 1, 3 and 5wt. %). Multiwall carbon nanotubes (MWCNTs) at different concentration (0.2, 0.4, 0.8 and 1 wt. %) were added to the BaTiO3/epoxy nanocomposites. The influence of MWCNTs on the tensile properties and thermal conductivity was investigated. The tensile strength and Young’s modulus of BaTiO3/epoxy nanocomposites film were increased at up to 3 wt. % of added BT, but adding BT at more than 3 wt.% decreased the strength of epoxy. The tensile strength was increased with incre
... Show MoreThe present work studies the mechanical properties of SiO2 μPs, and NPs in St/PVA blends. The samples were prepared by casting method as PVA, St/PVA blends at different concentrations (30, 40, 50, and 60 %). DSC and TGA tests were carried out to the samples evolved. The result showed a single glass transition temperature (Tg) for all St /PVA blends that was attributed to the good miscibility of the blends involved. It was found that (Tg) decrease with starch ratio increase. It was seen that (PVA) of (Tg=105 oC); The glass transition temperature which was decrease with starch ratio that was attributed to glass transition relaxation process due to micro-Brownian motion of the main chain back bond. The endothermic peak at 200 oC was attrib
... Show MoreConfigured binary polymer blends of epoxy and Polyurethane was chosen varying proportions of these materials led to the production of homogeneous mixtures of Althermust Althermust and descent was poured polyurethane models required in the form of 4 mm thick plates
In this study a polymeric composite material was prepared by hand
lay-up technique from epoxy resin as a matrix and magnesium oxide
(MgO) as a reinforcement with different weight fraction (5,10,15,
and 20)% to resin. Then the prepared samples were immersed under
normal condition in H2So4(1 M) solution, for periods ranging up to
10 weeks. The result revealed that the diffusion coefficient
decreasing as the concentration of MgO increase. Also we studied
Hardness for the prepared samples before and after immersion. The
result revealed that the hardness values increase as the concentration
of MgO increase, while the hardness for the samples after immersion
in H2SO4 dec
In this study, epoxy was used as a matrix for composite materials, with E-glass fiber, jute and PVC fiber which was woven roving fiber, as reinforcement with volume fraction (Vf= 30%). There are two of prepared types of epoxy non reinforced, epoxy reinforced with E-glass, jute and PVC fibers including study of mechanical tests (Impact test, Bending test) different temperature and thermal conductivity and calculating the temperatures coefficient at different temperature. Results show that elastic modulus at rate values decrease to the increase of temperature and the impact strength, impact energy and thermal conductivity increase with increase temperature.