Mandali Basin is located between latitudes (33◦ 39' 00" and 33◦
54' 55") to the north and longitudes (45ο 11' 00" and 45ο 40' 00") to the
east; to the east of Diyala province at the Iraqi-Iranian border; the
basin area is approximately 491 km2.
From the study of climate reality of the basin between 1990-
2013and assessment of the basic climate transactions, it was found
that the annual rate of rainfall is 253.02 mm, the relative humidity
(44.4%), the temperature (21.3 ◦C), wind speed (2.08 m /sec.),
sunshine (8.27 h/day) and evaporation of the basin class (a) (271.98
mm) and corrected potential evapotranspiration (80.03 mm). The
results of the data analysis show that, there are three basic periods of
climate variability wet period, semi wet and dry period.
This study shows that, there is water surplus of 60.87% of the
rainfall amount which is equivalent to 154.03 mm, the amount of
runoff is 7.47 mm, and the amount of water recharge is 146.56mm.
Ten samples were collected from Injana and Mukdadiya Formations, representing 5 samples of fine grain sandstone (F) and 5 samples of very fine grain sandstone (VF). The heavy metals study showed that the opaque mineral recorded the highest percentage in comparison with other heavy metals. While, transparent minerals, including unstable minerals (Amphibole including Hornblend and Glaucophane) and (pyroxene including Orthopyroxene and Clinopyroxene), Metastable minerals including (Epidote, staurolite, Garnet, Kyanite) indicated metamorphic source, Ultrastable minerals (Zircon, Rutile, Tourmaline), Mica group (chlorite, biotite and muscovite). These accumulations indicate that the heavy minerals are derived from mafic igneous and metamorphi
... Show MoreDensities of double salt [(NH4)2Fe(SO4)2.6H2O] dissolved in distilled water and in ethylene glycol at three temperatures (298.15,303.15 and 308.15)k have been utilized to calculate the apparent molar volume , limiting apparent molar volume ,experimental slop . These results provide as information about solute-solvent, solute-solute interaction and structure-forming, structure-breaking tendency from partial molar expansibility .
Water flow into unsaturated porous media is governed by the Richards’ partial differential equation expressing the mass conservation and Darcy’s laws. The Richards’ equation may be written in three forms,where the dependent variable is pressure head or moisture content, and the constitutive relationships between water content and pressure head allow for conversion of one form into the other. In the present paper, the “moisture-based" form of Richards’ equation is linearized by applying Kirchhoff’s transformation, which
combines the soil water diffusivity and soil water content. Then the similarity method is used to obtain the analytical solution of wetting front position. This exact solution is obtained by means of Lie’s
In this work, laboratory experiments were carried out to verify direct contact membrane distillation system’s performance in highly saline water desalination. The study included the investigation of various operating conditions, like feed flow rate, temperature and concentration of NaCl solution and their impact on the permeation flux were discussed. 16 cm2 of a flat sheet membrane module with commercial poly-tetra-fluoroethylene (PTFE) membrane, which has 0.22 μm pore size, 96 µm thickness and 78% average porosity, was used. A high salt rejection factor was obtained greater than 99.9%, and the permeation flux up to 17.27 kg/m2.h was achieved at 65°C for hot feed side and 20°C for cold side stream.
This research aimed to examine the effect of concentration of dyes stuff, contact time, temperature and ratio of adsorbent weight in (gm) to volume of solution in (ml) on the percentage removal. Two dyes were used; direct blue 6 and direct yellow and the adsorbent was the maize cob. Batch experiments were performed by contacting different weights of adsorbent with 50 ml of solution of desired concentration with continuous stirring at various temperatures. The percentage of removal was calculated and the maximum percentage of removal was 80%. And as the concentration of solution, contact time, temperature and the ratio of adsorbent to volume of solution increase the percentage of removal increase.
In this study, the turbulent buoyancy driven fluid flow and heat transfer in a differentially heated rectangular enclosure filled with water is quantified numerically. The two dimensional governing differential equations are discretized using the finite volume method. SIMPLE algorithm is employed to obtain stabilized solution for high Rayleigh numbers by a computational code written in FORTRAN language. A parametric study is undertaken and the effect of Rayleigh numbers (1010 to 1014), the aspect ratio (30, 40 and 50), and the tilt angle (10o to 170o ) on fluid flow and heat transfer are investigated. The results of the adopted model in the present work is compared with previously published results and a qualitative agreement and a good
... Show More