Over the last few decades the mean field approach using selfconsistent
Haretree-Fock (HF) calculations with Skyrme effective
interactions have been found very satisfactory in reproducing
nuclear properties for both stable and unstable nuclei. They are
based on effective energy-density functional, often formulated in
terms of effective density-dependent nucleon–nucleon interactions.
In the present research, the SkM, SkM*, SI, SIII, SIV, T3, SLy4,
Skxs15, Skxs20 and Skxs25 Skyrme parameterizations have been
used within HF method to investigate some static and dynamic
nuclear ground state proprieties of 84-108Mo isotopes. In particular,
the binding energy, proton, neutron, mass and charge densities and
corresponding root mean square radius, neutron skin thickness and
charge form factor are calculated by using this method with the
Skyrme parameterizations mentioned above. The calculated results
are compared with the available experimental data. Calculations
show that the Skyrme–Hartree–Fock (SHF) theory with above
force parameters provides a good description on Mo isotopes.
The nucleon momentum distributions (NMD) and elastic electron scattering form factors of the ground state for some 1f-2p-shell nuclei, such as 58Ni, 60Ni, 62Ni, and 64Ni
isotopes have been calculated in the framework of the coherent fluctuation model (CFM) and expressed in terms of the weight function lf(x)l2 . The weight function (fluctuation function) has been related to the nucleon density distribution (NDD) of the nuclei and determined from the theory and experiment. The NDD is derived from a simple method based on the use of the single particle wave functions of the harmonic oscillator potential and the occupation numbers of the states. The feature of the l
RESRAD is a computer model designed to estimate risks and radiation doses from residual radioactive materials in soil. Thirty seven soil samples were collected from the area around the berms of Al-Tuwaitha site and two samples as background taken from an area about 3 km north of the site. The samples were measured by gamma-ray spectrometry system using high purity germanium (HPGe) detector. The results of samples measurements showed that three contaminated area with 238U and 235U found in the study area. Two scenarios were applied for each contaminated area to estimate the dose using RESRAD (onsite) version 7.0 code. The total dose of resident farmer scenario for area A, B and C are 0.854, 0.033 and 2.15×10-3 mSv.yr-1, respectively. Whi
... Show MoreThe aim of this research was to study the concentrations of Uranium in the phosphorus fertilizers using Nuclear track detector (CR-39). Our present investigation is based on the study of 10 types samples for different kinds of phosphorus fertilizers which were available in the local market Some of them were Iraqi made and the others from different countries like, (Iran, Italy, Holland, Lebanon and Jordan) .. The result obtained shows that the Uranium concentration in phosphorus fertilizers samples varies from (3.59ppm) to(2.59ppm). Based on the radioactive concentration of Uranium in the samples all the results obtained between(3.59ppm) in the Iraqi super phosphate to (2.59ppm) in the mixture Iraqi phosphate fertilizer are withi
... Show MoreBiological samples of mother's milk were collected from Iraqi southern provinces(Basrah,Messan,al-Muthana,Thikar)and Baghdad province to measure uranium concentration of the samples by using track technique of fission fragments as a result from uranium atom fission with thermal neutrons from neutrons source 24 I Am-Be with activity 16Ci and neutron flux of 5000 n/cm2.s on using nuclear track detector CR-39 It was found that the high percentage of depleted uranium concentration on the samples from Muthana province , which accounted as 4.183ppm therefore the samples was taken from the provinces (Thikar,Basrah,Baghdad),which was accounted the depleted uranium concentration as following (1.243,2.172,2.875) ppm respectively, with appear a small
... Show MoreThe neutron, proton, and matter densities of the ground state of the proton-rich 23Al and 27P exotic nuclei were analyzed using the binary cluster model (BCM). Two density parameterizations were used in BCM calculations namely; Gaussian (GS) and harmonic oscillator (HO) parameterizations. According to the calculated results, it found that the BCM gives a good description of the nuclear structure for above proton-rich exotic nuclei. The elastic form factors of the unstable 23Al and 27P exotic nuclei and those of their stable isotopes 27Al and 31P are studied by the plane-wave Born approximation. The main difference between the elastic form factors of unstable nuclei and the
... Show MoreThe radial wave functions of the cosh potential within the three-body model of (Core+ 2n) have been employed to investigate the ground state properties such as the proton, neutron and matter densities and the associated rms radii of neutron-rich 6He, 11Li, 14Be, and 17B exotic nuclei. The density distributions of the core and two valence (halo) neutrons are described by the radial wave functions of the cosh potential. The obtained results provide the halo structure of the above exotic nuclei. Elastic electron scattering form factors of these halo nuclei are studied by the plane-wave Born approximation.
The Aim of this paper is to investigate numerically the simulation of ice melting in one and two dimension using the cell-centered finite volume method. The mathematical model is based on the heat conduction equation associated with a fixed grid, latent heat source approach. The fully implicit time scheme is selected to represent the time discretization. The ice conductivity is chosen
to be the value of the approximated conductivity at the interface between adjacent ice and water control volumes. The predicted temperature distribution, percentage melt fraction, interface location and its velocity is compared with those obtained from the exact analytical solution. A good agreement is obtained when comparing the numerical results of one