Over the last few decades the mean field approach using selfconsistent
Haretree-Fock (HF) calculations with Skyrme effective
interactions have been found very satisfactory in reproducing
nuclear properties for both stable and unstable nuclei. They are
based on effective energy-density functional, often formulated in
terms of effective density-dependent nucleon–nucleon interactions.
In the present research, the SkM, SkM*, SI, SIII, SIV, T3, SLy4,
Skxs15, Skxs20 and Skxs25 Skyrme parameterizations have been
used within HF method to investigate some static and dynamic
nuclear ground state proprieties of 84-108Mo isotopes. In particular,
the binding energy, proton, neutron, mass and charge densities and
corresponding root mean square radius, neutron skin thickness and
charge form factor are calculated by using this method with the
Skyrme parameterizations mentioned above. The calculated results
are compared with the available experimental data. Calculations
show that the Skyrme–Hartree–Fock (SHF) theory with above
force parameters provides a good description on Mo isotopes.
Electrochemical machining is one of the widely used non-conventional machining processes to machine complex and difficult shapes for electrically conducting materials, such as super alloys, Ti-alloys, alloy steel, tool steel and stainless steel. Use of optimal ECM process conditions can significantly reduce the ECM operating, tooling, and maintenance cost and can produce components with higher accuracy. This paper studies the effect of process parameters on surface roughness (Ra) and material removal rate (MRR), and the optimization of process conditions in ECM. Experiments were conducted based on Taguchi’s L9 orthogonal array (OA) with three process parameters viz. current, electrolyte concentration, and inter-electrode gap. Sig
... Show MoreIn this study, experimental and numerical applied of heat distribution due to pulsed Nd: YAG laser surface melting. Experimental side was consists of laser parameters are, pulse duration1.3
The aerodynamic characteristics of general three-dimensional rectangular wings are considered using non-linear interaction between two-dimensional viscous-inviscid panel method and vortex ring method. The potential flow of a two-dimensional airfoil by the pioneering Hess & Smith method was used with viscous laminar, transition and turbulent boundary layer to solve flow about complex configuration of airfoils including stalling effect. Viterna method was used to extend the aerodynamic characteristics of the specified airfoil to high angles of attacks. A modified vortex ring method was used to find the circulation values along span wise direction of the wing and then interacted with sectional circulation obtained by Kutta-Joukowsky theorem of
... Show MoreFlexure members such as reinforced concrete (RC) simply supported beams subjected to two-point loading were analyzed numerically. The Extended Finite Element Method (XFEM) was employed for the treatment the non-smooth h behaviour such as discontinuities and singularities. This method is a powerful technique used for the analysis of the fracture process and crack propagation in concrete. Concrete is a heterogeneous material that consists of coarse aggregate, cement mortar and air voids distributed in the cement paste. Numerical modeling of concrete comprises a two-scale model, using mesoscale and macroscale numerical models. The effectiveness and validity of the Meso-Scale Approach (MSA) in modeling of the reinforced concrete beams w
... Show MoreThe -multiple mixing ratios of γ-transitions from levels of populated in the are calculated in the present work by using the a2-ratio methods. We used the experimental coefficient (a2) for two γ-transitions from the same initial state, the statistical tensor, which is related to the a2-coefficient would be the same for the two transitions. This method was used in a previous work for pure transitions or which can be considered pure. In these cases the multiple mixing ratios for the second transition ( ) equal zero, but in our work we applied this method for mixed γ-transitions and then the multiple mixing ratio ( ) is known for one transition. Then we calculate the ( ) value and versareversa. The weight average of the -values calcu
... Show MoreThe calculation of the oil density is more complex due to a wide range of pressuresand temperatures, which are always determined by specific conditions, pressure andtemperature. Therefore, the calculations that depend on oil components are moreaccurate and easier in finding such kind of requirements. The analyses of twenty liveoil samples are utilized. The three parameters Peng Robinson equation of state istuned to get match between measured and calculated oil viscosity. The Lohrenz-Bray-Clark (LBC) viscosity calculation technique is adopted to calculate the viscosity of oilfrom the given composition, pressure and temperature for 20 samples. The tunedequation of state is used to generate oil viscosity values for a range of temperatu
... Show MoreIn this work, the nano particles of Na-A zeolite were synthesized by sol –gel method. The samples were characterized by X-ray diffraction (XRD), X-ray luorescence (XRF), Surface area and pore volume, Atomic Force Microscope (AFM) and Fourier Transform Infrared Spectroscopy (FTIR). Results show that the nano A zeolite is with average crystal size is 74.77 nm., Si/Al ratio 1.03, BET surface area was 581.211m2/g and the pore volume for NaA was found equal to 0.355cm3/g.
This paper is concerned with the numerical solutions of the vorticity transport equation (VTE) in two-dimensional space with homogenous Dirichlet boundary conditions. Namely, for this problem, the Crank-Nicolson finite difference equation is derived. In addition, the consistency and stability of the Crank-Nicolson method are studied. Moreover, a numerical experiment is considered to study the convergence of the Crank-Nicolson scheme and to visualize the discrete graphs for the vorticity and stream functions. The analytical result shows that the proposed scheme is consistent, whereas the numerical results show that the solutions are stable with small space-steps and at any time levels.