Structural and optical properties of CdO and CdO0.99Cu0.01 thin
films were prepared in this work. Cadmium Oxide (CdO) and
CdO0.99Cu0.01semiconducting films are deposited on glass substrates
by using pulsed laser deposition method (PLD) using SHG with Qswitched
Nd:YAG pulsed laser operation at 1064nm in 6x10-2 mbar
vacuum condition and frequency 6 Hz. CdO and CdO0.99Cu0.01 thin
films annealed at 550 C̊ for 12 min. The crystalline structure was
studied by X-ray diffraction (XRD) method and atomic force
microscope (AFM). It shows that the films are polycrystalline.
Optical properties of thin films were analyzed. The direct band gap
energy of CdO and CdO0.99Cu0.01 thin films were determined from
(αhυ)1/2 vs. photon energy curve and found to be 2.3 eV for CdO thin
film, comparing with that the CdO0.99Cu0.01film which found to be
2.2eV. The electrical measurements shows that the conductivity and
mobility of the charge carriers increase when Cu doped CdO.
Cloth simulation and animation has been the topic of research since the mid-80's in the field of computer graphics. Enforcing incompressible is very important in real time simulation. Although, there are great achievements in this regard, it still suffers from unnecessary time consumption in certain steps that is common in real time applications. This research develops a real-time cloth simulator for a virtual human character (VHC) with wearable clothing. This research achieves success in cloth simulation on the VHC through enhancing the position-based dynamics (PBD) framework by computing a series of positional constraints which implement constant densities. Also, the self-collision and collision wit
... Show MorePhotobiomodulation (PBM) is a form of the use of visible red and Near-infrared (NIR) light at low power, where a laser light photon is absorbed at the electronic level, without heat production. PBM can be applied in wide range of treatment to help the wound, inflammation, edema, and pain reduction. However, there is a lack of scientific documentation regarding its actual effects. Objectives: This study assesses the impact of PBM on the release of M1-related cytokine in monocyte cells with particular emphasis on interleukin-1β (IL-1β) and Tumour Necrosis Factor α (TNF-α). Methods: Tamm-Horsfall Protein 1 (THP-1) macrophages M1 cells have been exposed to the light from the diode laser of 850nmat different doses (0, 0.6, 1.2 and 3.
... Show MoreBackground: clinically significant macular edema (CSME) is the commonest cause of visual loss in patients with diabetes mellitus and laser focal photocoagulation is the golden standard for treating it. Patients and Methods: A frequency doubled Nd: YAG laser was used to treat all eyes included in this study with diabetic maculopathy. Thirty eyes of three insulin dependent and twenty six non insulin dependent diabetic Iraqi patients were included. The study involved twenty six males, three females and followed for one year. Their ages were ranging between 36- 59 years, all of them from patients attending ophthalmic out-patient department in the medical city in the period between January 2005 and June 2006. Eyes divided in to two groups (fifte
... Show MoreThe purpose of this work was to study the effects of the Nd:YAG laser on exposed dentinal
tubules of human extracted teeth using a scanning electron microscope (SEM). Eighty 2.5mm-thick
slices were cut at the cementoenamel junction from 20 extracted human teeth with an electric saw. A
diamond bur was used to remove the cementum layer to expose the dentinal tubules. Each slice was
sectioned into four equal quadrants and the specimens were randomly divided into four groups (A to D ).
Groups B to D were lased for 2 mins using an Nd:YAG laser at 6 pulses per second at energy outputs of
80 , 100 and 120 mJ. Group A served as control. Under SEM observation, nonlased specimens showed
numerous exposed dentinal tubules. SEM o
Surface Plasmon Resonance (SPR)-based plastic optical fiber sensor for estimating the concentration and refractive index of sugar in human blood serum. The sensor is fabricated by a small part (10mm) of optical fiber in the middle is embedded in a resin block and then the polishing process is done, after that it is deposited with about (40nm) thickness of gold metal. The blood serum is placed on gold coated core of an Optical grade plastic optical fiber of 980 µm core diameter.
In this work, a fiber-optic biomedical sensor was manufactured to detect hemoglobin percentages in the blood. SPR-based coreless optical fibers were developed and implemented using single and multiple optical fibers. It was also used to calculate refractive indices and concentrations of hemoglobin in blood samples. An optical fiber, with a thickness of 40 nanometers, was deposited on gold metal for the sensing area to increase the sensitivity of the sensor. The optical fiber used in this work has a diameter of 125μm, no core, and is made up of a pure silica glass rod and an acrylate coating. The length of the fiber was 4cm removed buffer and the splicing process was done. It is found in practice that when the sensitive refractive i
... Show MoreIn this study, silver-tungsten oxide core–shell nanoparticles (Ag–WO3 NPs) were synthesized by pulsed laser ablation in liquid employing a (1.06 µm) Q-switched Nd:YAG laser, at different Ag colloidal concentration environment (different core concentration). The produced Ag–WO3 core–shell NPs were subjected to characterization using UV–visible spectrophotometry, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive spectroscopy, electrical analysis, and photoluminescence PL. The UV–visible spectra exhibited distinct absorption peaks at around 200 and 405 nm, which attributed to the occurrence of surface Plasmon reson