Preferred Language
Articles
/
ijp-241
Magnetic solar surface flux transport simulation
...Show More Authors

In this paper, the solar surface magnetic flux transport has been simulated by solving the diffusion–advection equation utilizing numerical explicit and implicit methods in 2Dsurface. The simulation was used to study the effect of bipolar tilted angle on the solar flux distribution with time. The results show that the tilted angle controls the magnetic distribution location on the sun’s surface, especially if we know that the sun’s surface velocity distribution is a dependent location. Therefore, the tilted angle parameter has distribution influence.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon May 15 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Finite Difference Method for Two-Dimensional Fractional Partial Differential Equation with parameter
...Show More Authors

 In this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional partial differential equation with parameter. The algorithm for the numerical solution of this equation is based on implicit and an explicit difference method. Finally, numerical example is provided to illustrate that the numerical method for solving this equation is an effective solution method.

View Publication Preview PDF
Publication Date
Sun Jun 07 2015
Journal Name
Baghdad Science Journal
A Solution of Second Kind Volterra Integral Equations Using Third Order Non-Polynomial Spline Function
...Show More Authors

In this paper, third order non-polynomial spline function is used to solve 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of this method, and to compare the computed results with other known methods.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving Some Fractional Partial Differential Equations by Invariant Subspace and Double Sumudu Transform Methods
...Show More Authors

      In this paper, several types of space-time fractional partial differential equations has been solved by using most of special double linear integral transform ”double  Sumudu ”. Also, we are going to argue the truth of these solutions by another analytically method “invariant subspace method”. All results are illustrative numerically and graphically.

View Publication Preview PDF
Crossref
Publication Date
Sun Aug 01 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weighted Residual Method for the System of Nonlinear Volterra Integral Equations of the Second Kind Using an Exponential Function
...Show More Authors

The numerical resolve nonlinear system of Volterra integral equation of the second kind (NLSVIEK2) has been considered. The exponential function is used as the base function of the collocation method to approximate the resolve of the problem. Arithmetic epitome are performed which have already been solved by weighted residual manner,  Taylor manner and block- by- block(2, 3, 5).

View Publication Preview PDF
Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Analytical Solution of Transient Heat Conduction through a Hollow Cylindrical Thermal Insulation Material of a Temperature Dependant Thermal Conductivity
...Show More Authors

The one-dimensional, cylindrical coordinate, non-linear partial differential equation of transient heat conduction through a hollow cylindrical thermal insulation material of a thermal conductivity temperature dependent property proposed by an available empirical
function is solved analytically using Kirchhoff’s transformation. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner radius with a step change in temperature. Four thermal insulation materials were selected. An identical analytical solution was achieved when comparing the results of temperature distribution with available analytical solution for the same four case studies that assume a constant the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Apr 05 2023
Journal Name
Journal Of Engineering
Analytical Solution of Transient Heat Conduction through a Hollow Spherical Thermal Insulation Material of a Temperature Dependant Thermal Conductivity
...Show More Authors

The one-dimensional, spherical coordinate, non-linear partial differential equation of transient heat conduction through a hollow spherical thermal insulation material of a thermal conductivity temperature dependent property proposed by an available empirical function is solved analytically using Kirchhoff’s transformation. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner radius with a step change in temperature. Four thermal insulation materials were selected. An identical analytical solution was achieved when comparing the results of temperature distribution with available analytical solution for the same four case studies that assume a constant thermal con

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Jul 31 2021
Journal Name
Iraqi Journal Of Science
An Approximate Solution of the Space Fractional-Order Heat Equation by the Non-Polynomial Spline Functions
...Show More Authors

     The linear non-polynomial spline is used here to solve the fractional partial differential equation (FPDE). The fractional derivatives are described in the Caputo sense. The tensor products are given for extending the one-dimensional linear non-polynomial spline to a two-dimensional spline  to solve the heat equation. In this paper, the convergence theorem of the method used to the exact solution is proved and the numerical examples show the validity of the method. All computations are implemented by Mathcad15.

View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Evaluate the Rate of Pollution in Soil using Simulink Environment
...Show More Authors

       In this paper we design a Simulink model which can be evaluate the concentration of Copper, Lead, Zinc, Cadmium, Cobalt, Nickel, Crum and Iron. So, this model would be a method to determine the contamination levels of these metals with the potential for this contamination sources with their impact. The aim of using Simulink environment is to solve differential equations individually and as given data in parallel with analytical mathematics trends. In general, mathematical models of the spread heavy metals in soil are modeled and solve to predict the behavior of the system under different conditions.

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximation Solution of Fuzzy Singular Volterra Integral Equation by Non-Polynomial Spline
...Show More Authors

A non-polynomial spline (NPS) is an approximation method that relies on the triangular and polynomial parts, so the method has infinite derivatives of the triangular part of the NPS to compensate for the loss of smoothness inherited by the polynomial. In this paper, we propose polynomial-free linear and quadratic spline types to solve fuzzy Volterra integral equations (FVIE) of the 2nd kind with the weakly singular kernel (FVIEWSK) and Abel's type kernel. The linear type algorithm gives four parameters to form a linear spline. In comparison, the quadratic type algorithm gives five parameters to create a quadratic spline, which is more of a credit for the exact solution. These algorithms process kernel singularities with a simple techniqu

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Baghdad Science Journal
Solving Fractional Damped Burgers' Equation Approximately by Using The Sumudu Transform (ST) Method
...Show More Authors

       In this work, the fractional damped Burger's equation (FDBE) formula    = 0,

View Publication Preview PDF
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref