Colloidal crystals (opals) made of close-packed polymethylmethacrylate (PMMA) were fabricated and grown by Template-Directed methods to obtain porous materials with well-ordered periodicity and interconnected pore systems to manufacture photonic crystals. Opals were made from aqueous suspensions of monodisperse PMMA spheres with diameters between 280 and 415 nm. SEM confirmed the PMMA spheres crystallized uniformly in a face-centered cubic (FCC) array. Optical properties of synthesized pores PMMA were characterized by UV–Visible spectroscopy. It shows that the colloidal crystals possess pseudo photonic band gaps in the visible region. A combination of Bragg’s law of diffraction and Snell’s law of refraction were used to calculate the sphere diameter. Finally, colloidal crystals were subjected to Z-scan experiment under pulsed Q-switched Nd:YAG laser illumination to characterize it for third order nonlinear optical properties. Z-scan results show the change in transmittance of a beam, and the nonlinear refractive index is n2 = 9.82787 x 10-12 (cm2/GW), while the nonlinear absorption coefficient β= 0.04673908 (cm/GW). These results were attributed to enhance the self-focusing arising from Kerr effect and the two-photon absorption.
Physics and applied mathematics form the basis for understanding natural phenomena using differential equations depicting the flow in porous media, the motion of viscous liquids, and the propagation of waves. These equations provide a thorough study of physical processes, enhancing the understanding of complex applications in engineering, technology, and medicine. This paper presents novel approximate solutions for the Darcy-Brinkmann-Forchheimer moment equation, the Blasius equation and the FalknerSkan equation with initial / boundary conditions by using two iterative methods: the variational iteration method and the optimal variational iteration method. The variational iteration method is effectively developed by adding a control paramete
... Show MoreAbstract
This research presents a on-line cognitive tuning control algorithm for the nonlinear controller of path-tracking for dynamic wheeled mobile robot to stabilize and follow a continuous reference path with minimum tracking pose error. The goal of the proposed structure of a hybrid (Bees-PSO) algorithm is to find and tune the values of the control gains of the nonlinear (neural and back-stepping method) controllers as a simple on-line with fast tuning techniques in order to obtain the best torques actions of the wheels for the cart mobile robot from the proposed two controllers. Simulation results (Matlab Package 2012a) show that the nonlinear neural controller with hybrid Bees-PSO cognitive algorithm is m
... Show MoreSteady conjugate natural convection heat transfers in a two-dimensional enclosure filled with fluid saturated porous medium is studied numerically. The two vertical boundaries of the enclosure are kept isothermally at same temperature, the horizontal upper wall is adiabatic, and the horizontal lower wall is partially heated. The Darcy extended Brinkman Forcheimer model is used as the momentum equation and Ansys Fluent software is utilized to solve the governing equations. Rayleigh number (1.38 ≤ Ra ≤ 2.32), Darcy number (3.9 * 10-8), the ratio of conjugate wall thickness to its height (0.025 ≤ W ≤ 0.1), heater length to the bottom wall ratio (1/4 ≤ ≤ 3/4) and inclination angle (0°, 30° and 60°) are the main consid
... Show MoreJava is a high-level , third generation programming language were introduced Javaoptics Open Source Physics (OSP) as a new simulation for design one of the most important interference optical coating called antireflection coating. It is recent developments in deign thin-film coatings. (OSP) shows multiple beam interferences from a parallel dielectric thin film and the evolution of reflection factors. It is simple to use and efficiently also can serve educational purposes. The obtained results have been compared with needle method
In this work we fabrication holographic optical element diffraction grating thickness 40?m and mirror90?m by using dichromated gelatin,to perform that we have to use the Nd-yaG laser doubling frequency of wavelenght (532)nm and its powers of (80)mWatt.we have studyed the thickness and concentration dichromat effect in mirror reflaction ,effect of angle of reconstruction beam in band width and diffraction efficiency ,study effect gelatin hardener of the diffraction efficiency.