In this study, an easy, low-cost, green, and environmentally
friendlier reagents have been used to prepare CdS QDs, in chemical
reaction method by mixed different ratio of CdO and sulfur in
paraffin liquid as solvent and oleic acid as the reacting media in
different concentration to get the optimum condition of the reaction
to formation CdS QDs. The results give an indication that the
behavior is at small concentration of 4ml of the oleic acid is best
concentration which give CdS QDs of small about to 9.23 nm with
nano fiber configuration.
New derivatives of pyromellitamic diacids and pyromellitdiimides have been prepared by the reaction of one mole of pyromellitic dianhydride with two moles of aromatic amines, these derivatives were characterized by elemental analysis, FT-IR and melting point.
The topological indices of the "[(µ3-2, 5-dioxyocyclohexylidene)-bis ((2-hydrido)-nonacarbonyltriruthenium]” were studied within the quantum theory of atoms in the molecule (QTAIM), clusters are
analyzed using the density functional theory (DFT). The estimated topological variables accord with prior
descriptions of comparable transition metal complexes. The Quantum Theory of Atom, in molecules
investigation of the bridging core component, Ru3H2, revealed critical binding points (chemical bonding)
between Ru (1) and Ru (2) and Ru (3). Consequently, delocalization index for this non-bonding interaction
was calculated in the core of Ru3H2, the interaction is of the (5centre–5electron) class.
Electron Transfer reaction rate constants at Semiconductor / Liquid interfaces are calculated dy using the Fermi Golden Rule for Semiconductor. The reorganization energy   eVï„ is computed for Semiconductor / Liquid Interfaces system in two solvents and compared with experimental value. The driving force (free energy) ΔGo(eV) is calculated depending on spectrum Ru(H2L`)2 (NCS)2 . The transfer is treated according with weak coupling (nonadiabatic) for two – state level between the Semiconductor and acceptor molecule state.
New 1,3-oxazol-5(4H)-one(3) was synthesized by cyclization of[(4-Methyl phenyl-carbonyl)amino]acetic acid (2). The starting materials were readily obtained by acylation of 2-amino acetic acid (Glycine) with 4-methyl phenyl chloride .Imidazole(4) was synthesized by reaction of compound (3) with hydrazine hydrate (99%). Compound (4) was isolated and characterized by 1HNMR , FTIR , uv-vis spectroscopy and elemental analysis (C.H.N). Compound (4) has been used as a ligand (L) to prepare a number of metal complexes with Cr(III), Mn(II), Co(II), Ni(II) , Cu(II) and Zn(II).
The prepared complexes were isolated and characterized by FTIR and Uv-vis spectroscopy elemental analysis (C.H.N), flame atomic absorption technique, as well as magnetic
Quick and accurate quaternary mixture resolution of furosemide (FURO), carbamazepine (CARB), diazepam (DIAZ) and carvedilol (CARV) by using derivative spectrophotometric method was performed. FURO and CARV were determined by means of first (D1), second (D2), third (D3) and fourth (D4) derivative spectrophotometric methods, CARB was determined by using D1, D2, D3 derivatives, while D1 and D2 were used for the determination of DIAZ. The recommended methods were verified using laboratory prepared mixtures and then successfully applied for the pharmaceutical formulations analysis of the cited drugs. The results obtained revealed the efficiency of the proposed methods as quantitative tool of analysis of the quaternary mixture with no requirement
... Show MoreA simple, accurate and sensitive spectrophotometric way is used to determine Bisacodyl in pure and pharmaceutical preparations. The proposed method depends on using 2,4-Dinitrophenylhydrazine as chromogenic reagent . The method was based on the oxidative coupling reaction of Bisacodyl with 2,4-Dinitrophenylhydrazine with Sodium periodate in the presence of sodium hydroxide as alkaline media to form red water soluble dye product , that has a maximum absorption at ?max 522nm . Beer ,s law is obeyed in the concentration of (2.00–20.00) ?g.ml -1 .The molar absorptivity is (6505) L.mol-1.cm-1,a sandall sensitivity of(0.0555) ?g.cm-2), correlation coefficient of (0.9970) , Limitof detection (LOD) (0.0312 ?g.ml-1), limit of Quantitation (LOQ) (
... Show More