Chemical spray pyrolysis technique was used at substrate temperature 250 ˚C with annealing temperature at 400 ˚C (for 1hour) to deposition tungsten oxide thin film with different doping concentration of Au nanoparticle (0, 10, 20, 30 and 40)% wt. on glass substrate with thickness about 100 nm. The structural, optical properties were investigated. The X-ray diffraction shows that the films at substrate temperature (250 ˚C) was amorphous while at annealing temperature have a polycrystalline structure with the preferred orientation of (200), all the samples have a hexagonal structure for WO3 and Au gold nanoparticles have a cubic structure. Atomic force microscopy (AFM) was used to characterize the morphology of the films. The optical properties of the films were studied using UV-Vis spectrophotometer within the wavelength in the range (300-1100) nm. The optical energy gap of the films was (2.80) eV for WO3 and it decreased at annealing temperature (400 ˚C) equal to (2.65) eV. And finally the optical constants such as refractive index, real and imaginary dielectrics, absorption coefficient, absorption, transmission, and extinction coefficient were investigated.
Metal enhanced fluorescence (MEF) is an unequaled phenomenon of metal nanoparticle surface plasmons, when light interacts with the metal nanostructures (silver nanoparticles) which result electromagnetic fields to promote the sensitivity of fluorescence. This work endeavor to study the influence of silver nanoparticles on fluorescence intensity of Fluoreseina dye by employment mixture solution with different mixing ratio. Silver nanoparticles had been manufactured by the chemical reduction method so that Ag NP layer coating had been done by hot rotation liquid method. The optical properties of the prepared samples (mixture solution of Fluoreseina dye solutions and colloidal solution with 5 minutes prepared of Ag NPs) tested by using UV-V
... Show MoreHerein, a cost-effective bio approach using extract derived from desert truffles (Tirmania nivea) is utilized to synthesize gold nanoparticles (AuNPs). AuNPs were thoroughly investigated using UV–vis, XRD, SEM, and TEM analyses. It was shown that nanoparticles had an fcc structure with a smooth spherical surface, an average diameter of 9.44 ± 0.26 nm, and an SPR band observed at 548 nm. Investigations were conducted on AuNPs' antibacterial and anti-cancer properties of prostate cancer cells. The findings suggest that AuNPs showed better antibacterial effects against S. aureus compared to E. coli, P. aeruginosa, and K. pneumoniae. AuNPs’ combination with antibiotics demonstrated a synergistic effect with significant antibacterial activi
... Show MoreCdS films were prepared by thermal evaporation technique at thickness 1 µm on glass substrates and these films were doped with indium (3%) by thermal diffusion method. The electrical properties of these have been investigated in the range of diffusion temperature (473-623 K)> Activation energy is increased with diffusion temperature unless at 623 K activation energy had been decreased. Hall effect results have shown that all the films n-type except at 573 and 623 K and with increase diffusion temperature both of concentration and mobility carriers were increased.
Sb2S3 thin films have been prepared by chemical bath deposition on a glas sub Absorbance and transmittance spectra were recorded in the wavelength range (30-900) nm. The effects of thickness on absorption coefficient, reflectance, refractive index, extinction coefficient, real and imaginary parts of dielectric constant were estimated. It was found that the reflectivity, absorption coefficient , extinction coefficient, real part of dielectric constant and refractive index, all these parameters decrease as the thickness increased, while the imaginary part of the dielectric constant increase as the thickness incre
... Show MoreThis paper presents the study and analysis, analytically and numerical of circular cylindrical shell pipe model, under variable loads, transmit fluid at the high velocity state (fresh water). The analytical analysis depended on the energy observation principle (Hamilton Principle), where divided all energy in the model to three parts , strain energy, kinetic energy and transmitted energy between flow and solid (kinetic to potential energy). Also derive all important equations for this state and approach to final equation of motion, free and force vibration also derived. the relations between the displacement of model function of velocity of flow, length of model, pipe thickness, density of flowed with location coordinate x-axis and angle
... Show More
The nanocompsite of alumina (Al2O3) produced a number of beneficial effects in alloys. There is increasing in resistance of materials to surface related failures , such as the mechanical properties , fatigue and stress corrosion cracking .The experimental results observed that the adding of reinforced nanomaterials type Al2O3 enhanced the HB hardness, UTS, 0.2 YS and ductility of 2014 Al/Al2O3 nano composites . the analysis of experiments, indicated that The maximum enhancement was observed at 0.4 wt.% Al2O3. The ultimate improvement percentage were 15.78% HB hardness, 18.1% (UTS), 12.86% (
... Show MoreSelenium is naturally present in the human body, animals, and plants, and is one of the important elements in their growth and maintenance. Recently, the nanoform of selenium has attracted attention due to its low toxicity and a high degree of adsorption compared to its organic and inorganic forms. The current study aimed to examine the effect of Cress leaves (Lepidium sativum L.) extract in combination with selenium nanoparticles in alleviating polycystic ovary syndrome in letrozole-induced PCOS in adult female rats. Nonthermal or cold plasma was used in the synthesis of selenium nanoparticles. Subsequently, the produced nanoparticles were identified, the 30 rats were divided into 6 equal groups, the first group was healthy (negative contr
... Show MoreGe-Au infrared photoconductive detection was prepared from germanium single crystal which were doped with different gold concentration using thermal evaporation. The spectral resonsivity (Rλ), spectral detectivity (D*) were determined as function of wavelength, also the resistance, conductivity in dark and with illumination to infrared radiation, the gain and relative photo response have been measured with different gold concentration. Remarkable improvements in the photoresponse gain were observed for the highest resistance specimen at the expense of spectral detectivity values.
A thin CdS Films have been evaporated by thermal evaporation technique with different thicknesses (500, 1000, 1500 and 2000Å) and different duration times of annealing (60, 120 180 minutes) under 573 K annealing temperature, the vacuum was about 8 × 10-5 mbar and substrate temperature was 423 K. The structural properties of the films have been studied by X- ray diffraction technique (XRD). The crystal growth became stronger and more oriented as the film thickness (T) and duration time of annealing ( Ta) increases.
 
        