Preferred Language
Articles
/
ijp-228
Change detection of remotely sensed image using NDVI subtractive and classification methods.
...Show More Authors

Change detection is a technology ascertaining the changes of
specific features within a certain time Interval. The use of remotely
sensed image to detect changes in land use and land cover is widely
preferred over other conventional survey techniques because this
method is very efficient for assessing the change or degrading trends
of a region. In this research two remotely sensed image of Baghdad
city gathered by landsat -7and landsat -8 ETM+ for two time period
2000 and 2014 have been used to detect the most important changes.
Registration and rectification the two original images are the first
preprocessing steps was applied in this paper. Change detection using
NDVI subtractive has been computed, subtractive between the bands
of the two images and the ratio of the red to blue bands was also
computed. Change detection mask using minimum distance
classification or detection after classification have be also used to
compute the changes between the resultant classes, many statistical
properties of the original and process image have been illustrated in
this research

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Al-nahrain Journal Of Science
Image Classification Using Bag of Visual Words (BoVW)
...Show More Authors

In this paper two main stages for image classification has been presented. Training stage consists of collecting images of interest, and apply BOVW on these images (features extraction and description using SIFT, and vocabulary generation), while testing stage classifies a new unlabeled image using nearest neighbor classification method for features descriptor. Supervised bag of visual words gives good result that are present clearly in the experimental part where unlabeled images are classified although small number of images are used in the training process.

View Publication Preview PDF
Crossref (19)
Crossref
Publication Date
Mon Oct 10 2016
Journal Name
Iraqi Journal Of Science
Satellite image classification using KL-transformation and modified vector quantization
...Show More Authors

In this work, satellite images classification for Al Chabaish marshes and the area surrounding district in (Dhi Qar) province for years 1990,2000 and 2015 using two software programming (MATLAB 7.11 and ERDAS imagine 2014) is presented. Proposed supervised classification method (Modified Vector Quantization) using MATLAB software and supervised classification method (Maximum likelihood Classifier) using ERDAS imagine have been used, in order to get most accurate results and compare these methods. The changes that taken place in year 2000 comparing with 1990 and in year 2015 comparing with 2000 are calculated. The results from classification indicated that water and vegetation are decreased, while barren land, alluvial soil and shallow water

... Show More
Publication Date
Mon Feb 04 2019
Journal Name
Journal Of The College Of Education For Women
Use digital classification to follow change detection of al Razzazah sebkha For the period(1976-2013)
...Show More Authors

The Sebkha is considered the evaporative geomorphological features, where climate plays an active role. It forms part of the surface features in Mesopotamia plain of Iraqi, which is the most fertile lands, and because of complimentary natural and human factors turned most of the arable land to the territory of Sebkha lands. The use satellite image (Raw Data), Landsat 30M Mss for the year 1976 Landsat 7 ETM, and the Landsat 8 for year 2013 (LDCM) for the summer Landsat Data Continuity Mission and perform geometric correction, enhancements, and Subset image And a visual analysis Space visuals based on the analysis of spectral fingerprints earth's This study has shown that the best in the discrimination of Sebkha Remote sensing techniques a

... Show More
View Publication Preview PDF
Publication Date
Sat Sep 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Brain Tumor Detection Method Using Unsupervised Classification Technique
...Show More Authors

Magnetic  Resonance  Imaging  (MRI)  is  one  of  the  most important diagnostic tool. There are many methods to segment the

tumor of human brain. One of these, the conventional method that uses pure image processing techniques that are not preferred because they need human interaction for accurate segmentation. But unsupervised methods do not require any human interference and can segment   the   brain   with   high   precision.   In   this   project,   the unsupervised  classification methods have been used in order to detect the tumor  disease from MRI images.    These metho

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 12 2011
Journal Name
Baghdad Science Journal
Satellite Images Unsupervised Classification Using Two Methods Fast Otsu and K-means
...Show More Authors

Two unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.

View Publication Preview PDF
Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Self-Localization of Guide Robots Through Image Classification
...Show More Authors

The field of autonomous robotic systems has advanced tremendously in the last few years, allowing them to perform complicated tasks in various contexts. One of the most important and useful applications of guide robots is the support of the blind. The successful implementation of this study requires a more accurate and powerful self-localization system for guide robots in indoor environments. This paper proposes a self-localization system for guide robots.  To successfully implement this study, images were collected from the perspective of a robot inside a room, and a deep learning system such as a convolutional neural network (CNN) was used. An image-based self-localization guide robot image-classification system delivers a more accura

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Fri Feb 08 2019
Journal Name
Journal Of The College Of Education For Women
COMPARATIVE STUDY FOR EDGE DETECTION OF NOISY IMAGE USING SOBEL AND LAPLACE OPERATORS
...Show More Authors

Many approaches of different complexity already exist to edge detection in
color images. Nevertheless, the question remains of how different are the results
when employing computational costly techniques instead of simple ones. This
paper presents a comparative study on two approaches to color edge detection to
reduce noise in image. The approaches are based on the Sobel operator and the
Laplace operator. Furthermore, an efficient algorithm for implementing the two
operators is presented. The operators have been applied to real images. The results
are presented in this paper. It is shown that the quality of the results increases by
using second derivative operator (Laplace operator). And noise reduced in a good

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 14 2020
Journal Name
2020 13th International Conference On Developments In Esystems Engineering (dese)
Anomaly Based Intrusion Detection System Using Hierarchical Classification and Clustering Techniques
...Show More Authors

With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Oil spill classification based on satellite image using deep learning techniques
...Show More Authors

 An oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Crossref
Publication Date
Mon Jan 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
ON-Line MRI Image Selection and Tumor Classification using Artificial Neural Network
...Show More Authors

When soft tissue planning is important, usually, the Magnetic Resonance Imaging (MRI) is a medical imaging technique of selection. In this work, we show a modern method for automated diagnosis depending on a magnetic resonance images classification of the MRI. The presented technique has two main stages; features extraction and classification. We obtained the features corresponding to MRI images implementing Discrete Wavelet Transformation (DWT), inverse and forward, and textural properties, like rotation invariant texture features based on Gabor filtering, and evaluate the meaning of every

... Show More
View Publication Preview PDF
Crossref (1)
Crossref