Non-thermal argon plasma needle at atmospheric pressure was
constructed. The experimental setup was based on a simple and low
cost electric component that generates a sufficiently high electric
field at the electrodes to ionize the argon gas which flow at
atmospheric pressure. A high AC power supply was used with 1.1
kV and 19.57 kHz. Non-thermal Argon plasma used on blood
samples to show the ability of non-thermal plasma to promote blood
coagulation. Three tests have been done to show the ability of plasma
to coagulate both normal and anti-coagulant blood. Each blood
sample has been treated for varying time from 20sec. to 180sec. at
different distances. The results of the current study showed that the
cold plasma produced from argon significantly increase the in vitro
speed of blood coagulation, the plasma increases activation and
aggregation of platelets, causes proliferation of fibroblasts and fibrin
production accelerates blood coagulation.
In this work, diamond-like carbon (DLC) thin films were prepared from Cyclohexane. Thin films were deposited on quartz substrate by atmospheric pressure Argon plasma jet system. The plasma jet system was applying high voltage sinusoidal waves of frequency 28 kHz and potential difference of 7.5kV peak to peak across the electrodes. The effect of annealing at 400, 500 and 600 °C under vacuum for two hours on optical properties and structural properties of the DLC thin films were investigated. This effect was clarified by X-ray diffraction (XRD), FTIR, UV-Visible absorption, Scanning Electron Microscopy (SEM) and Raman Spectroscopy. The X-ray diffraction patterns for the annealing DLC thin films show two broad peaks at 2θ, 26.62° and 51.58
... Show MoreObjective: Chronic periodontitis (CP) is a common inflammatory disease that causes destruction to the supporting tissues of the teeth. Many treatment modalities tried to stop the disease progression. Platelet-rich plasma (PRP) is one of the regenerative methods that used in adjunct to conventional periodontal treatment. The aim of this study was to evaluate the anti-inflammatory effect of PRP by monitoring the lymphocyte count before and after its application to the periodontal pocket. Materials and Methods: Twenty patients, with CP and a pocket depth equal to or deeper than 4 mm, subjected to scaling, root planing, and PRP injection into the pocket. The lymphocyte count measured before an
Background: Non-nutritive sucking habit (NNSH) is the main environmental causative factor that disturbs normal orofacial development. In spite of the harmful effect of pacifier as a NNSH, mothers aware from the other types of NNSH like thumb sucking far more than pacifier use. Open bite is one of the most challenging malocclusions in orthodontics due to the high prevalence of relapse after treatment, so preventing the causative factor of its occurrence is essential at early age of child life. This study aims to assess the impact of two non-nutritive patterns on the development of anterior open bite in primary dentition and to compare which of these habits mostly affect open bite development. Materials and Methods: The sample consisted of
... Show MoreMortar of ordinary Portland cement was blended with cockles shell
powder at different weight ratios to investigate the effect of powder
admixture on their strength and thermal conductivity. Results showed
that addition of cockles shell powder at 50% of mortar weight
improves hardness and compressive strength notably and reduces the
thermal conductivity of the end product. Results suggest the
possibility to incorporate cockles shell powders as constituents in
cement mortars for construction and plastering applications.
This study investigates the possibility of using waste plastic as one of the components of expired lead-acid batteries to produce lightweight concrete. Different percentages of lead-acid battery plastic were used in the production of lightweight concrete. The replacements were (70, 80 and 100%) by volume of the fine and coarse aggregate. Results demonstrated that a reduction of approximately 23.6% to 35% in the wet density was observed when replacement of 70% to 100% of the natural aggregate by lead-acid battery plastic. Also, the compressive strength decreased slightly with the increase in plastic content at different curing ages of 7, 28, 60, 90, 120 days. The lowest value of compressive strength was (20.7 MPa) for (wa
... Show MoreBackground Cardiovascular disease (CVD) is a leading cause of death worldwide. Ischemic heart disease is a major cause of morbidity and mortality. Lack of blood supply to the brain can cause tissue death if any of the cerebral veins, carotid arteries, or vertebral arteries are blocked. An ischemic stroke describes this type of event. One of the byproducts of methionine metabolism, the demethylation of methionine, is homocysteine, an amino acid that contains sulfur. During myocardial ischemia, the plasma level of homocysteine (Hcy) increases and plays a role in many methylation processes. Hyperhomocysteinemia has only recently been recognized as a major contributor to the increased risk of cardiovascular disease (CVD) owing to its eff
... Show MoreDiamond-like carbon, amorphous hydrogenated films forms of carbon, were pretreated from cyclohexane (C6H12) liquid using plasma jet which operates with alternating voltage 7.5kv and frequency 28kHz. The plasma Separates molecules of cyclohexane and Transform it into carbon nanoparticles. The effect of argon flow rate (0.5, 1 and 1.5 L/min) on the optical and chemical bonding properties of the films were investigated. These films were characterized by UV-Visible spectrophotometer, X-ray diffractometer (XRD) Raman spectroscopy and scanning electron microscopy (SEM). The main absorption appears around 296, 299 and 309nm at the three flow rate of argon gas. The value of the optical energy gap is 3.37, 3.55 and 3.68 eV at a different flow rate o
... Show MoreAbstract This research scrutinizes the impact of external magnetic field strength variations on plasma jet parameters to enhance its performance and flexibility. Plasma jets are widely used for their high thermal and kinetic energy in both medical and industrial fields. The study employs optical emission spectroscopy to measure electron temperature, electron density, and plasma frequency in a plasma jet subjected to varying magnetic field strengths (25, 50, 100, 150, and 250 mT). The results indicate that a stronger magnetic field results in higher electron temperature (1.485 to 1.991 eV), electron density (5.405 × 1017 to 7.095 × 1017), and plasma frequency 7.382 × 1012 to 8.253 × 1012 Hz. As well as the research investigates the influ
... Show More