NiO0.99Cu0.01 films have been deposited using thermal evaporation
technique on glass substrates under vacuum 10-5mbar. The thickness
of the films was 220nm. The as -deposited films were annealed to
different annealing temperatures (373, 423, and 473) K under
vacuum 10-3mbar for 1 h. The structural properties of the films were
examined using X-ray diffraction (XRD). The results show that no
clear diffraction peaks in the range 2θ= (20-50)o for the as deposited
films. On the other hand, by annealing the films to 423K in vacuum
for 1 h, a weak reflection peak attributable to cubic NiO was
detected. On heating the films at 473K for 1 h, this peak was
observed to be stronger. The most intense peak is at 2θ = 37.12o with
the preferential orientation of the films being (111) plane. The optical
properties of the films have been studied. The effect of annealing
temperature on the optical parameters of NiO0.99Cu0.01 such as
transmittance, reflectance, absorption coefficient, refractive index,
extinction coefficient, and real and imaginary parts of dielectric
constant has been reported.
The corrosion inhibition of low carbon steel in1N HCl solution in the presence of peach juice at temperature (30,40,50,and 60)°C at concentration ( 5, 10, 20, 30, 40and 50 cm3/L)were studied using weight loss and polarization techniques. Results show that the inhibition efficiency was increased with the increase of inhibitor concentration and increased with the increase of temperature up to 50ºC ,above 50ºC (i.e. at 60 ºC) the values of efficiency decreases. Activation parameters of the corrosion process such as activation energies, Ea, activation enthalpies, ΔH, and activation entropies, ΔS, were calculated. The adsorption of inhibitor follows Langmuir isotherm. Maximum inhibition efficiency obtained was a bout 91% at 50ºC in the
... Show MoreThe annealing temperature (200–500 °C) effects of optical frequency response on the dielectric functions of sol–gel derived CuCoO
Zinc Oxide (ZnO) is probably the most typical II-VI
semiconductor, which exhibits a wide range of nanostructures. In
this paper, polycrystalline ZnO thin films were prepared by chemical
spray pyrolysis technique, the films were deposited onto glass
substrate at 400 °C by using aqueous zinc chloride as a spray
solution of molar concentration of 0.1 M/L.
The crystallographic structure of the prepared film was analyzed
using X-ray diffraction; the result shows that the film was
polycrystalline, the grain size which was calculated at (002) was
27.9 nm. The Hall measurement of the film studied from the
electrical measurements show that the film was n-type. The optical
properties of the film were studied using
The effect of three high temperatures for five exposure periods on the developments of larvae, pupae and adults of Trogoderma granarium (Everts) and their biological performance were investigated. The results revealed that the percent of mortality was increased as the temperature and the exposure period increased, e. g. exposing last instar larvae to 45°C for 6 hrs caused 100% death of this stage, while exposing adults (1-3) days old to the same temperature and exposure time resulted in that these adults did not able to survive more than 24 hrs.; in addition, the results showed that the ability of reproduction of adults was depended on the temperature, duration of exposure and the sex.
In this paper, construction microwaves induced plasma jet(MIPJ) system. This system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate by using flow meter, to diagnose microwave plasma optical emission spectroscopy(OES) was used to measure the important plasma parameters such as electron temperature (Te), residence time (Rt), plasma frequency (?pe), collisional skin depth (?), plasma conductivity (?dc), Debye length(?D). Also, the density of the plasma electron is calculated with the use of Stark broadened profiles
Thin film solar cells are preferable to the researchers and in applications due to the minimum material usage and to the rising of their efficiencies. In particular, thin film solar cells, which are designed based one transition metal chalcogenide materials, paly an essential role in solar energy conversion market. In this paper, transition metals with chalcogenide Nickel selenide termed as (NiSe2/Si) are synthesized. To this end, polycrystalline NiSe2 thin films are deposited through the use of vacuum evaporation technique under vacuum of 2.1x10-5 mbar, which are supplied to different annealing temperatures. The results show that under an annealed temperature of 525 K,
... Show MoreThick films of poly(vinyl chloride)(PVC)& PVC doped with Zn(etx)2 salt complex have been prepared by cast method with fixed thickness almost (120±5) Microns. Optical studies were carried out in the wavelengths region(200-900)nm based on absorption & transmition measurement. Optical parameters such as absorption coefficient(?) ,refraction index(n) and extinction coefficient(K) were observed to be effected by adding the dopant.Electrical parameters such as real(?)& imaginary(?) part of dielectric constant were also calculated part of dielectric constant were also calculated from the optical parameters using Maxwell equation.