The molar ratio(x) of Li-Ni ferrites in the formula Li0.5-0.5xNixFe2.5-
0.5xO4 was varied in range 0.1-1.0 by hydrothermal process. The
XRD, SEM, and TEM tests were conducted to examine the samples
crystalline phase and to characterize the particles shapes and sizes.
The high purity spinel structure was obtained at med and high x
values. SEM and TEM images showed the existence of different
ferrite particles shapes like nanospheres and nanorods. The
maximum particle size is around (20nm). These size encourage
occurrence of super paramagnetic state. The reflection loss and
insertion loss as microwave losses of Li-Ni ferrite-epoxy composite
of 1mm thickness and mixing ratio 39.4 wt was investigated. The
minimum reflection loss in x-band and in Ku band was about -8dB
around 10GHz and lower than -18dB respectively. The insertion loss
exceeded -6dB in the two band for some samples.
This paper presents on the design of L-Band Multiwavelength laser for Hybrid Time Division Multiplexing/ Wavelength Division Multiplexing (TDM/WDM) Passive Optical Network (PON) application. In this design, an L-band Mulltiwavelength Laser is designed as the downstream signals for TDM/WDM PON. The downstream signals ranging from 1569.865 nm to 1581.973 nm with 100GHz spacing. The multiwavelength laser is designed using OptiSystem software and it is integrated into a TDM/WDM PON that is also designed using OptiSystem simulation software. By adapting multiwavelength fiber laser into a TDM/WDM network, a simple and low-cost downstream signal is proposed. From the simulation design, it is found that the proposed design is suitable to be used
... Show MoreBackground:
Ferrite with general formula Ni1-x Cox Fe2O4(where x=0.0.1,0.3,0.5,0.7, and 0.9), were prepared by standard ceramic technique. The main cubic spinel structure phase for all samples was confirmed by x-ray diffraction patterns. The lattice parameter results were (8.256-8.299 °A). Generally, x -ray density increased with the addition of Cobalt and showed value between (5.452-5.538gm/cm3). Atomic Force Microscopy (AFM) showed that the average grain size and surface roughness was decreasing with the increasing cobalt concentration. Scanning Electron Microscopy images show that grains had an irregular distribution and irregular shape. The A.C conductivity was found to increase with the frequency and the addition of Cobal
... Show MoreThe effect of α-particle irradiation on the optical absorption in nuclear track detectors (LR115) has been studied. These detectors have been irradiated with different doses. The optical absorption has been measured using the ultraviolet-visible (UV-1100) spectroscopy, that irradiation results in shifting the peaks of the optical absorption. The values of Urbach energy have been calculated from the position of steady-state optical band gap energy, for a standard sample which was unirradiated with indirect influence, has been found 1.9 eV whereas its value after irradiation 1.98 eV. In case of the direct influence, it is found to be, respectively, before irradiation 1.98 eV and after irradiation 2.05 eV. From these results, we can
... Show MoreSpin coating technique used to prepare ZnPc, CdS and ZnPc/CdS blend thin films, these films annealed at 423K for 1h, 2h and 3h. Optical behavior of these films were examined using UV-Vis. and PL. The absorption spectrum of ZnPc shows a decreasing in absorption with the increase of annealing time while CdS spectrum give a clearly absorption peak at~510 nm. Energy gap of ZnPc increases from 1.41 to 1.52 eV by increasing the annealing time. Eg of CdS decrease by increasing annealing time, from 2.3 eV to 2.2 eV. The intensities of the peaks obtained from PL spectra were strongly dependent on annealing time and confirmed the results obtained from UV-Vis. D.C. conductivity measurement showed that all the thin films have two differen
... Show MoreExtension of bandwidth for high reflectance zone for the spectral region (8-14pm) was studied adapting the concept of contiguous and overlapping high reflectance stacks. Computations was carried out using the modified characteristic matrix theory restricted to near-normal incidence of light on dielectric , homogenous and isotropic symmetrical stack. Certain precautions must be taken in the choice of stacks to avoid deep —reflectance minima from developing within the extended high reflectance region. Results illustrate that the techniques of extending the high reflectance regions are applicable not only to mirrors , but also to short-and long-edge filter and to narrow band pass filters.
In-Band Full-Duplex (IBFD) systems have the capability of simultaneously transmitting and receiving signals through the channel and require the same resources as half-duplex systems. Unfortunately, IBFD systems have self-interference (SI) issues that prevent the system from gaining double throughput with respect to half-duplex systems. Therefore, the IBFD system will be more reliable if SI is mitigated more. This contribution will look at SI cancellation in wireless radio and underwater acoustic systems. The reviewed documents cover all types of SI cancellations, including passive, analog, and digital cancellations. In a practical full-duplex system, the SI cancellation for all domains must cancel the SI below the receiver noi
... Show MoreIn this paper, tunable optical band-pass filters based on Polarization Maintaining Fiber –Mach Zehnder Interferometer presented. Tunability of the band-pass filter implemented by applying different mechanical forces N on the micro-cavities splicing regions (MCSRs). The micro-cavity formed by using three variable-lengths of single-mode polarization-maintaining fiber with (8, 16, 24) cm lengths, splice between two segments of (SMF-28) with (26, 13) cm lengths, using the fusion splicing technique. Ellipsoidal shape micro-cavities experimentally achieved parallel to the propagation axis having dimensions between (12-24) μm of width and (4-12) μm of length. A micro-cavity with width and length as high as 24 μm and 12 μ
... Show MoreThis research involves design and simulation of GaussianFSK transmitter in UHF band using direct modulation of ΣΔ fractional-N synthesizer with the following specifications:
Frequency range (869.9– 900.4) MHz, data rate 150kbps, channel spacing (500 kHz), Switching time 1 µs, & phase noise @10 kHz = -85dBc.
New circuit techniques have been sought to allow increased integration of radio transmitters and receivers, along with new radio architectures that take advantage of such techniques. Characteristics such as low power operation, small size, and low cost have become the dominant design criteria by which these systems are judged.
A direct modulation by ΣΔ fractional-N synthesizer is proposed
... Show More