Preferred Language
Articles
/
ijp-220
Charge density distributions and electron scattering form factors of 25Mg, 27Al and 29Si nuclei
...Show More Authors

An effective two-body density operator for point nucleon system
folded with the tenser force correlations( TC's), is produced and used
to derive an explicit form for ground state two-body charge density
distributions (2BCDD's) applicable for 25Mg, 27Al and 29Si nuclei. It is
found that the inclusion of the two-body TC's has the feature of
increasing the central part of the 2BCDD's significantly and reducing
the tail part of them slightly, i.e. it tends to increase the probability of
transferring the protons from the surface of the nucleus towards its
centeral region and consequently makes the nucleus to be more rigid
than the case when there is no TC's and also leads to decrease the
1/ 2
r 2 of the nucleus. It is also found that the effect of the TC's and the
effect of increasing the values of  on the 2BCDD's, elastic
electron scattering form factors and r2 1/ 2 are in the same direction
for all considered nuclei.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Study of Matter Density Distributions, Elastic Electron Scattering Form factors and Root Mean Square Radii of 9C, 12N, 23Al, 11Be and 15C Exotic Nuclei
...Show More Authors

    The ground state densities of neutron-rich (11Be,15C) and proton-rich (9C,12N,23Al) exotic nuclei are investigated using a two-body nucleon density distribution (2BNDD) with two frequency shells model (TFSM). The structure of the valence one-neutron of 11Be is in pure (1p1/2) and of 15C in pure (1d5/2) configuration, while the structure of valence one-proton configuration is in 9C,12N are to be in a pure (1p1/2) and 23Al in a pure  (2s1/2) . For our studied nuclei, an efficient (2BNDD) operator for point nucleon system folded with two-body correlation operator's functions is  u

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Physics
Study of matter density distributions, elastic charge form factors and size radii for halo 11Be, 19C and 11Li nuclei
...Show More Authors

In this work, the calculation of matter density distributions, elastic charge form factors and size radii for halo 11Be, 19C and 11Li nuclei are calculated. Each nuclide under study are divided into two parts; one for core part and the second for halo part. The core part are studied using harmonic-oscillator radial wave functions, while the halo part are studied using the radial wave functions of Woods-Saxon potential. A very good agreement are obtained with experimental data for matter density distributions and available size radii. Besides, the quadrupole moment for 11Li are generated.

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Jan 13 2019
Journal Name
Iraqi Journal Of Physics
Shell model and Hartree-Fock calculations of electron scattering form factors for 25Mg nucleus
...Show More Authors

Shell model and Hartree-Fock calculations have been adopted to study the elastic and inelastic electron scattering form factors for 25Mg nucleus. The wave functions for this nucleus have been utilized from the shell model using USDA two-body effective interaction for this nucleus with the sd shell model space. On the other hand, the SkXcsb Skyrme parameterization has been used within the Hartree-Fock method to get the single-particle potential which is used to calculate the single-particle matrix elements. The calculated form factors have been compared with available experimental data.

View Publication Preview PDF
Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Iraqi Journal Of Physics
THE DIFFERENCE IN THE CHARGE DENSITY DISTRIBUTION OF 90Zr and 92Mo NUCLEI FROM ELASTIC ELECTRON SCATTERING
...Show More Authors

The calculation. of the nuclear. charge. density. distributions. ρ(r) and root. mean. square. radius.( RMS ) by elastic. electron. scattering. of medium. mass. nuclei. such. as (90Zr, 92Mo) based. on the model. of the modified. shell. and the use of the probability. of occupation. on the surface. orbits. of level 2p, 2s eroding. shells. and 1g gaining. shells. The occupation probabilities of these states differ noticeably from the predictions of the SSM. We have found. an improvement. in the determination. of ground. charge. density. and this improvement. allow. more precise. identification. of (CDD) between. (92Mo- 90Zr) to illustrate the influence of the extra

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Iraqi Journal Of Physics
Elastic Form Factors and Matter Density Distributions of Some Neutron-Rich Nuclei
...Show More Authors

The ground-state properties of exotic 18N and 20F nuclei, including the neutron, proton and matter densities and related  radii are investigated using the two-body model of   within Gaussian (GS) and Woods Saxon (WS) wave functions. The long tail is evident in the computed neutron and matter densities of these nuclei. The plane wave Born approximation (PWBA) is  calculate the elastic form factors of these exotic nuclei. The variation in the proton density distributions due to the presence of the extra neutrons in 18N and 20F leads to a major difference between the elastic form factors of these exotic nuclei and their stable isotopes 14N and 19F. The reaction c

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Apr 28 2022
Journal Name
Iraqi Journal Of Science
Nucleon momentum distributions and elastic electron scattering form factors for 50Cr, 52Cr and 54Cr isotopes
...Show More Authors

In the framework of correlation method so-called coherent density fluctuation model (CDFM) the nucleon momentum distributions (NMD) of the ground state for some even mass nuclei of fp-shell like 50Cr, 52Cr and 54Cr isotopes are examined. Nucleon momentum distributions are expressed in terms of the fluctuation function (|f(x)|2) which is evaluated by means of the nucleon density distributions (NDD) of the nuclei and determined from theory and experiment. The main characteristic feature of the NMD obtained by CDFM is the existence of high-momentum components, for momenta k ≥ 2 fm−1. For completeness, also elastic electron scattering form factors, F(q) are evaluated within the same framework.

View Publication Preview PDF
Publication Date
Thu Mar 30 2023
Journal Name
Iraqi Journal Of Science
Elastic Electron Scattering Form Factors and Charge Densities for Some Nuclei in 2s-1d Shell Using the Effect of Occupation Numbers
...Show More Authors

Elastic electron scattering form factors, charge density distributions and charge,
neutron and matter root mean square (rms) radii for P
24
PMg, P
28
PSi and P
32
PS nuclei are
studied using the effect of occupation numbers. Single-particle radial wave functions
of harmonic-oscillators (HO) potential are used. In general, the results of elastic
charge form factors showed good agreement with experimental data. The occupation
numbers are taken to reproduce the quantities mentioned above. The inclusion of
occupation numbers enhances the form factors to become closer to the data. For the
calculated charge density distributions, the results show good agreement with
experimental data except the fail to

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Study of charge density distributions, elastic charge form factors and root-mean square radii for 4He, 12C and 16O nuclei using Woods- Saxon and harmonic-oscillator potentials
...Show More Authors

The nuclear charge density distributions, form factors and
corresponding proton, charge, neutron, and matter root mean square
radii for stable 4He, 12C, and 16O nuclei have been calculated using
single-particle radial wave functions of Woods-Saxon potential and
harmonic-oscillator potential for comparison. The calculations for the
ground charge density distributions using the Woods-Saxon potential
show good agreement with experimental data for 4He nucleus while
the results for 12C and 16O nuclei are better in harmonic-oscillator
potential. The calculated elastic charge form factors in Woods-Saxon
potential are better than the results of harmonic-oscillator potential.
Finally, the calculated root mean square

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Investigation of Ground Density Distributions and Charge Form Factors for 14,16,18,20,22N using Cosh Potential
...Show More Authors

     The bound radial wave functions of Cosh potential which are the solutions to the radial part of Schrodinger equation are solved numerically and used to compute the size radii; i.e., the root-mean square proton, neutron, charge and matter radii, ground density distributions and elastic electron scattering charge form factors for nitrogen isotopes 14,16,18,20,22N. The parameters of such potential for the isotopes under study have been opted so as to regenerate the experimental last single nucleon binding energies on Fermi's level and available experimental size radii as well.

View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Jul 02 2023
Journal Name
Iraqi Journal Of Science
Elastic Electron Scattering form Factors for Odd-A 2s-1d Shell Nuclei
...Show More Authors

The charge density distributions (CDD) and the elastic electron scattering form
factors F(q) of the ground state for some odd mass nuclei in the 2s 1d shell, such
as K Mg Al Si 19 25 27 29 , , , and P 31
have been calculated based on the use of
occupation numbers of the states and the single particle wave functions of the
harmonic oscillator potential with size parameters chosen to reproduce the observed
root mean square charge radii for all considered nuclei. It is found that introducing
additional parameters, namely; 1  , and , 2  which reflect the difference of the
occupation numbers of the states from the prediction of the simple shell model leads
to very good agreement between the calculated an

... Show More
View Publication Preview PDF