The electrical properties of pure NiO and NiO:Au Films which are
deposited on glass substrate with various dopant concentrations
(1wt.%, 2wt%, 3wt.% and 4wt.%) at room temperature 450 Co
annealing temperature will be presented. The results of the hall effect
showed that all the films were p-type. The Hall mobility decreases
while both carrier concentration and conductivity increases with the
increasing of annealing temperatures and doping percentage, Thus,
indicating the behavior of semiconductor, and also the D.C
conductivity from which the activation energy decrease with the
doping concentration increase and transport mechanism of the charge
carriers can be estimated.
In this work, the emission spectra and atomic structure of the aluminum target had been studied theoretically using Cowan code. Cowan code was used to calculate the transitions of electrons between atomic configuration interactions using the mathematical method called (Hartree-Fock). The aluminum target can give a good emission spectrum in the XUV region at 10 nm with oscillator strength of 1.82.
The hydrodynamic properties of laser produced plasma (LPP) were investigated for the purpose of creating a light source working in the EUV region. Such a light source is very important for lithography (semiconductor manufacturing). The improved MEDUSA (Med103) code can calculate the plasma hydrodynamic properties (velocity, electron density,
The technical of Flame Thermal Spray had been used in producing a cermet
composite based on powders of stabilized zirconium oxide containing amount of
Yatteria oxide (ZrO2- 8Y2O3) reiforced by minerals powders of bonding material
(Ni-Cr- Al- Y) in different rates of additions (25, 35, 50) on stainless steel base type
(304) after preparing it by the way of Grit Blasting.
Before heat treatment, the coated cermet layers were characterized for porosity
and electric resistivity. All samples were heat treated in vacuum furnace at different
temperature and times. The physical tests had been operated after heat treatment
and gave best results especially porosity, which found to be reduced dramatically
and producing hig
The gas sensing properties of Co3O4 and Co3O4:Y nano structures were investigated. The films were synthesized using the hydrothermal method on a seeded layer. The XRD, SEM analysis and gas sensing properties were investigated for Co3O4 and Co3O4:Y thin films. XRD analysis shows that all films are polycrystalline in nature, having a cubic structure, and the crystallite size is (11.7)nm for cobalt oxide and (9.3)nm for the Co3O4:10%Y. The SEM analysis of thin films obviously indicates that Co3O4 possesses a nanosphere-like structure and a flower-like structure for Co3O4:Y.
The sen
... Show MoreTo learn how the manner of preparation influences film development, this study examined film expansion under a variety of deposition settings. To learn about the membrane’s properties and to ascertain the optimal pretreatment conditions, which are represented by ambient temperature and pressure, Laser pressure of 2.5[Formula: see text]m bar, the laser energy density of 500[Formula: see text]mJ, distortion ratio ([Formula: see text]) as a function of laser pulse count, all achieved with the double-frequency Nd: YAG laser operating in quality-factor mode at 1064[Formula: see text]nm. MgxZn[Formula: see text] films of thickness [Formula: see text][Formula: see text]nm were deposited on glass substrates at pulse
... Show MoreCopper Telluride Thin films of thickness 700nm and 900nm, prepared thin films using thermal evaporation on cleaned Si substrates kept at 300K under the vacuum about (4x10-5 ) mbar. The XRD analysis and (AFM) measurements use to study structure properties. The sensitivity (S) of the fabricated sensors to NO2 and H2 was measured at room temperature. The experimental relationship between S and thickness of the sensitive film was investigated, and higher S values were recorded for thicker sensors. Results showed that the best sensitivity was attributed to the Cu2Te film of 900 nm thickness at the H2 gas.
The Ge0.4Te0.6 alloy has been prepared. Thin films of Ge0.4Te0.6 has been prepared via a thermal evaporation method with 4000A thickness, and rate of deposition (4.2) A/sec at pressure 2x10-6 Torr. The A.C electrical conductivity of a-Ge0.4Te0.6 thin films has been studied as a function of frequency for annealing temperature within the range (423-623) K, the deduced exponent s values, was found to decrease with increasing of annealing temperature through the frequency of the range (102-106) Hz. It was found that, the correlated barrier hopping (CBH) is the dominant conduction mechanism. Values of dielectric constant ε1 and dielectric loss ε2 were found to decrease with frequency and increase with temperature. The activation energies have
... Show MoreZnO thin films have been prepared by pulse laser deposition technique at room temperatures (RT). These films were deposited on GaAs substrate to form the ZnO/GaAs heterojunction solar cell. The effect of annealing temperatures at ( RT,100, 200)K on structural and optical properties of ZnO thin films has been investigated. The X-ray diffraction analysis indicated that all films have hexagonal polycrystalline structure. AFM shows that the grains uniformly distributed with homogeneous structure. The optical absorption spectra showed that all films have direct energy gap. The band gap energy of these films decreased with increasing annealing temperatures. From the electrical properties, the carriers have n-type conductivity. From
... Show More