This work aim to prepare Ag/R6G/PMMA nanocomposite thin
films by In-situ plasma polymerization and study the changes in the
optical properties of fluorophore due to the presence of Ag
nanoparticles structures in the vicinity of the R6G laser dye. The
concentrations of R6G dye/MMA used are: 10-4M solutions were
prepared by dissolving the required quantity of the R6G dye in
MMAMonomer. Then Silver nanoparticles with 50 average particles
size were mixed with MMAmonomer with concentration of 0.3, 0.5,
0.7wt% to get R6G silver/MMA in liquid phase. The films were
deposited on glass substrates by dielectric barrier discharge plasma
jet. The Ag/R6G/PMMA nanocomposite thin films were
characterization by UV-Visible absorption spectra by using a double
beam UV-Vis-NIR Spectrophotometer and fluorescence
Spectrophotometer. The thin films surface morphological analysis is
carried out by employing an AFM and SEM. the structure analysis
are achieved by X-ray diffraction. The thickness of the films was
measured by optical interferometric method. AFM analysis shows
that the surface roughness of plasma polymerized pure PMMA thin
films was 2.7 nm and for (10-4 R6G + 0.7wt% Ag)Ag/R6G/PMMA
thin films was 4.16 nm. The SEM images were indicates that Ag
nanoparticles (NPs) disperse in the PMMA matrix with uniform
distribution and formed mostly spherical NPs and slightly
agglomerate. Also the silver nanoparticles with 0.7wt%
concentration enhances the absorption process by 2.3 times and the
fluorescence by 1.7 times. it can be conclude, that the addition of low
concentrations of silver nanoparticles to the PMMA/ R6G matrix was
changing the optical properties of the prepared nanocomposite thin
films.
Identifying phenolic compounds in some genera belonging in the Amaranthaceae family by HPLC technique
In this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo
... Show MoreThis paper is concerned with combining two different transforms to present a new joint transform FHET and its inverse transform IFHET. Also, the most important property of FHET was concluded and proved, which is called the finite Hankel – Elzaki transforms of the Bessel differential operator property, this property was discussed for two different boundary conditions, Dirichlet and Robin. Where the importance of this property is shown by solving axisymmetric partial differential equations and transitioning to an algebraic equation directly. Also, the joint Finite Hankel-Elzaki transform method was applied in solving a mathematical-physical problem, which is the Hotdog Problem. A steady state which does not depend on time was discussed f
... Show MoreThis research aims to develop new spectrophotometric analytical method to determine drug compound Salbutamol by reaction it with ferric chloride in presence potassium ferricyanide in acid median to formation of Prussian blue complex to determine it by uv-vis spectrophotmetric at wavelengths rang(700-750)nm . Study the optimal experimental condition for determination drug and found the follows: 1- Volume of(10M) H2SO4 to determine of drug is 1.5 ml . 2- Volume and concentration of K3Fe(CN)6 is 1.5 ml ,0.2% . 3- Volume and concentration of FeCl3 is 2.5ml , 0.2%. 4- Temperature has been found 80 . 5- Reaction time is 15 minute . 6- Order of addition is (drug + K3Fe(CN)6+ FeCl3 + acid) . Concentration rang (0.025-5 ppm) , limit detecti
... Show MoreIsolated Bacteria from the roots of barley were studied; two stages of processes Isolated and screening were applied in order to nd the best bacteria to remove kerosene from soil. The acve bacteria are isolated for kerosene degradaon process. It has been found that Klebsiella pneumoniae sp. have the highest kerosene degradaon which is 88.5%. The opmum condions of kerosene degradaon by Klebsiella pneumonia sp. are pH5, 48hr incubaon period, 35°C temperature and 10000ppm the best kerosene concentraon. The results 10000ppm showed that the maximum kerosene degradaon can reach 99.58% aer 48 h of incubaon. Higher Kerosene degradaon which was 99.83% was obtained at pH5. Kerosene degradaon was found
... Show MoreThis paper deals with the modeling of a preventive maintenance strategy applied to a single-unit system subject to random failures.
According to this policy, the system is subjected to imperfect periodic preventive maintenance restoring it to ‘as good as new’ with probability
p and leaving it at state ‘as bad as old’ with probability q. Imperfect repairs are performed following failures occurring between consecutive
preventive maintenance actions, i.e the times between failures follow a decreasing quasi-renewal process with parameter a. Considering the
average durations of the preventive and corrective maintenance actions a
... Show MoreThis research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.
KE Sharquie, AA Noaimi, HA Al-Mudaris, Journal of Cosmetics, Dermatological Sciences and Applications, 2012 - Cited by 6
Measuring the efficiency of postgraduate and undergraduate programs is one of the essential elements in educational process. In this study, colleges of Baghdad University and data for the academic year (2011-2012) have been chosen to measure the relative efficiencies of postgraduate and undergraduate programs in terms of their inputs and outputs. A relevant method to conduct the analysis of this data is Data Envelopment Analysis (DEA). The effect of academic staff to the number of enrolled and alumni students to the postgraduate and undergraduate programs are the main focus of the study.