Photonic Crystal Fiber Interferometers (PCFIs) are greatly used
for sensing applications. This work presents the fabrication and
characterization of a relative humidity sensor based on Mach-
Zehnder Interferometer (MZI), which operates in reflection mode.
The humidity sensor operation based on the adsorption and
desorption of water vapour at the silica-air interface within the PCF.
The fabrication of this sensor is simple, it only includes splicing and
cleaving the PCF with SMF.PCF (LMA-10) with a certain length
spliced to SMF (Corning-28).
The spectrum of PCFI exhibits good sensitivity to humidity
variations. The PCFI response is observed for a range of humidity
values from (27% RH to 85% RH), the position of the interference
peaks is found to be shifted to longer wavelength with humidity
increasing. In this work, a different length of PCFs are used, and the
maximum humidity sensitivity of (5.86 pm / %RH) is achieved with
(4.5cm) PCF length, and the rise time of (8sec) is achieved. This
humidity sensor has distinguished features as that it does not require
the use of a hygroscopic material, robust, compact size, immunity to
electromagnetic interference, and it has potential applications for
high humidity environments.
This study employs wavelet transforms to address the issue of boundary effects. Additionally, it utilizes probit transform techniques, which are based on probit functions, to estimate the copula density function. This estimation is dependent on the empirical distribution function of the variables. The density is estimated within a transformed domain. Recent research indicates that the early implementations of this strategy may have been more efficient. Nevertheless, in this work, we implemented two novel methodologies utilizing probit transform and wavelet transform. We then proceeded to evaluate and contrast these methodologies using three specific criteria: root mean square error (RMSE), Akaike information criterion (AIC), and log
... Show MoreThe economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s
... Show MoreProfessional learning societies (PLS) are a systematic method for improving teaching and learning performance through designing and building professional learning societies. This leads to overcoming a culture of isolation and fragmenting the work of educational supervisors. Many studies show that constructing and developing strong professional learning societies - focused on improving education, curriculum and evaluation will lead to increased cooperation and participation of educational supervisors and teachers, as well as increases the application of effective educational practices in the classroom.
The roles of the educational supervisor to ensure the best and optimal implementation and activation of professional learning soci
... Show MoreBlockchain has garnered the most attention as the most important new technology that supports recent digital transactions via e-government. The most critical challenge for public e-government systems is reducing bureaucracy and increasing the efficiency and performance of administrative processes in these systems since blockchain technology can play a role in a decentralized environment and execute a high level of security transactions and transparency. So, the main objectives of this work are to survey different proposed models for e-government system architecture based on blockchain technology implementation and how these models are validated. This work studies and analyzes some research trends focused on blockchain
... Show MoreNatural dye sensitized solar cell was prepared using strawberry and pomegranate dyes with anatase nanocrystalline titanium dioxide powder. A study of the optical properties of the two dyes, involving the absorption spectrum was determined in the visible region. I-V characteristics under illumination were performed. The results showed that the two prepared dye sensitized solar cells have acceptable values efficiency about (0.94 with Fill factor (45)) and (0.74 with Fill factor (44)) for strawberry and pomegranate dyes, respectively.
Deep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show More