Photonic Crystal Fiber Interferometers (PCFIs) are greatly used
for sensing applications. This work presents the fabrication and
characterization of a relative humidity sensor based on Mach-
Zehnder Interferometer (MZI), which operates in reflection mode.
The humidity sensor operation based on the adsorption and
desorption of water vapour at the silica-air interface within the PCF.
The fabrication of this sensor is simple, it only includes splicing and
cleaving the PCF with SMF.PCF (LMA-10) with a certain length
spliced to SMF (Corning-28).
The spectrum of PCFI exhibits good sensitivity to humidity
variations. The PCFI response is observed for a range of humidity
values from (27% RH to 85% RH), the position of the interference
peaks is found to be shifted to longer wavelength with humidity
increasing. In this work, a different length of PCFs are used, and the
maximum humidity sensitivity of (5.86 pm / %RH) is achieved with
(4.5cm) PCF length, and the rise time of (8sec) is achieved. This
humidity sensor has distinguished features as that it does not require
the use of a hygroscopic material, robust, compact size, immunity to
electromagnetic interference, and it has potential applications for
high humidity environments.
Aesthetic performance in the mobile sculptures
Ali Abd Almohsen Ali
Abstract
Chapters of this research are discussed one of the turning points in the In the history of sculpture, which sparked a debate in artistic circles, namely the introduction of the actual movement in sculpture . The researcher highlighted on one of the corners of the controversy on this subject for discussion and looking in and Found results contribute to answer some questions . the Beginning been allocated to the statement of this Research Methodology , research problem, and its importance, and its goal, and borders , the main problem is Lack of clarity of the concept of real motion (physical) in the sculpture , And how the audience understand the aspects
This article deals with the approximate algorithm for two dimensional multi-space fractional bioheat equations (M-SFBHE). The application of the collection method will be expanding for presenting a numerical technique for solving M-SFBHE based on “shifted Jacobi-Gauss-Labatto polynomials” (SJ-GL-Ps) in the matrix form. The Caputo formula has been utilized to approximate the fractional derivative and to demonstrate its usefulness and accuracy, the proposed methodology was applied in two examples. The numerical results revealed that the used approach is very effective and gives high accuracy and good convergence.
Within the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show MoreThis paper aims to build a modern vision for Islamic banks to ensure sustainability and growth, as well it aims to highlight the positive Iraqi steps in the Islamic banking sector. In order to build this vision, several scientific research approaches were adopted (quantitative, descriptive analytical, descriptive). As for the research community, it was for all the Iraqi private commercial banks, including Islamic banks. The research samples varied according to a diversity of the methods and the data availability. A questionnaire was constructed and conducted, measuring internal and external honesty. 50 questionnaires were distributed to Iraqi academic specialized in Islamic banking. All distributed forms were subject to a thorough analys
... Show MorePolarization manipulation elements operating at visible wavelengths represent a critical component of quantum communication sub-systems, equivalent to their telecom wavelength counterparts. The method proposed involves rotating the optic axis of the polarized input light by an angle of 45 degree, thereby converting the fundamental transverse electric (TE0) mode to the fundamental transverse magnetic (TM0) mode. This paper outlines an integrated gallium phosphide-waveguide polarization rotator, which relies on the rotation of a horizontal slot by 45 degree at a wavelength of 700 nm. This will ultimately lead to the conception of a mode hybridization phenomeno
A simple setup of random number generator is proposed. The random number generation is based on the shot-noise fluctuations in a p-i-n photodiode. These fluctuations that are defined as shot noise are based on a stationary random process whose statistical properties reflect Poisson statistics associated with photon streams. It has its origin in the quantum nature of light and it is related to vacuum fluctuations. Two photodiodes were used and their shot noise fluctuations were subtracted. The difference was applied to a comparator to obtain the random sequence.
Polarization manipulation elements operating at visible wavelengths represent a critical component of quantum communication sub-systems, equivalent to their telecom wavelength counterparts. The method proposed involves rotating the optic axis of the polarized input light by an angle of 45 degree, thereby converting the fundamental transverse electric (TE0) mode to the fundamental transverse magnetic (TM0) mode. This paper outlines an integrated gallium phosphide-waveguide polarization rotator, which relies on the rotation of a horizontal slot by 45 degree at a wavelength of 700 nm. This will ultimately lead to the conception of a mode hybridization phenomenon in the waveguide. The simulation results demonstrate a polarization co
... Show MoreCarbonate reservoirs are an essential source of hydrocarbons worldwide, and their petrophysical properties play a crucial role in hydrocarbon production. Carbonate reservoirs' most critical petrophysical properties are porosity, permeability, and water saturation. A tight reservoir refers to a reservoir with low porosity and permeability, which means it is difficult for fluids to move from one side to another. This study's primary goal is to evaluate reservoir properties and lithological identification of the SADI Formation in the Halfaya oil field. It is considered one of Iraq's most significant oilfields, 35 km south of Amarah. The Sadi formation consists of four units: A, B1, B2, and B3. Sadi A was excluded as it was not filled with h
... Show MorePurpose: the purpose of this study is to investigate how managers working for the General Authority for Irrigation and Reclamation Projects react to the impact of Emotional Intelligence (EI) on their performance. Theoretical framework: The current study includes an intellectual framework on two variables, namely EI and Manager Performance (MP), because it is essential to investigate the relationship between these two variables and the impact of EI on MP. Design/methodology/approach: The research problem is that a manager's capacity to make wise decisions about their work or interactions with subordinates is diminished when they have inadequate EI. The questionnaire is used as a tool for gathering data for the study, and the st
... Show More