In this paper, the generation of a chaotic carrier by Lorenz model
is theoretically studied. The encoding techniques has been used is
chaos masking of sinusoidal signal (massage), an optical chaotic
communications system for different receiver configurations is
evaluated. It is proved that chaotic carriers allow the successful
encoding and decoding of messages. Focusing on the effect of
changing the initial conditions of the states of our dynamical system
e.i changing the values (x, y, z, x1, y1, and z1).
Experimental measurements were done for characterizing current-voltage and power-voltage of two types of photovoltaic (PV) solar modules; monocrystalline silicon (mc-Si) and copper indium gallium di-selenide (CIGS). The conversion efficiency depends on many factors, such as irradiation and temperature. The assembling measures as a rule cause contrast in electrical boundaries, even in cells of a similar kind. Additionally, if the misfortunes because of cell associations in a module are considered, it is hard to track down two indistinguishable photovoltaic modules. This way, just the I-V, and P-V bends' trial estimation permit knowing the electrical boundaries of a photovoltaic gadget with accuracy. This measure
... Show MoreIn this research, the performance of a two kind of membrane was examined to recovering the nutrients (protein and lactose) from the whey produced by the soft cheese industry in the General Company for Food Products inAbo-ghraab.Wheyare treated in two stages, the first including press whey into micron filter made of poly vinylidene difluoride (PVDF) standard plate type 800 kilo dalton, The membrane separates the whey to permeate which represent is the main nutrients and to remove the fat and microorganisms.The second stage is to isolate the protein by using ultra filter made of polyethylsulphone(PES)type plate with a measurement of 10,60 kilo dalton and the recovery of lactose in the form of permeate.
The results showed that the percen
This paper discussed the solution of an equivalent circuit of solar cell, where a single diode model is presented. The nonlinear equation of this model has suggested and analyzed an iterative algorithm, which work well for this equation with a suitable initial value for the iterative. The convergence of the proposed method is discussed. It is established that the algorithm has convergence of order six. The proposed algorithm is achieved with a various values of load resistance. Equation by means of equivalent circuit of a solar cell so all the determinations is achieved using Matlab in ambient temperature. The obtained results of this new method are given and the absolute errors is demonstrated.
Finding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over
... Show MoreThe research aims to identify the effect of teaching-learning design based on the constructivism theory on the life skills of middle stage students. The sample consisted of (60) students from one of the middle schools in Baghdad's governorate. The experimental group and control group consisted of 30 students for each group, the research tool was the life skills scale composed of (78) items. The scale proved its validity and reliability, which was found to be (0.85). The results showed a statistically significant difference in life skills between the two groups of research in favor of the experimental group, which studied the educational design according to models of constructivism theory compared to the usual method of teaching.
This work dealt with separation of naphthenic hydrocarbons from non-naphthenic hydrocarbons and in particular concerns an improved process for increasing the naphthenes concentration in naphtha, The separation was examined using adsorption by Y and B zeolite in a fixed bed process. The concentration of naphthenes in the influent and effluent streams was determined using PONA classification. The effect of different operating variables such as feed flow rate (2- 4 L/hr); bed length (50 - 80 cm) on the adsorption capacity of Y and zeolite was studied. Increasing the bed length lead to increase the naphthenes concentration, and increasing the flow rate lead to decrease in the concentration of naphthenes, It was found that the decrease
... Show MoreThe goal of this work is to check the presence of PNS (photon number splitting) attack in quantum cryptography system based on BB84 protocol, and to get a maximum secure key length as possible. This was achieved by randomly interleaving decoy states with mean photon numbers of 5.38, 1.588 and 0.48 between the signal states with mean photon numbers of 2.69, 0.794 and 0.24. The average length for a secure key obtained from our system discarding the cases with Eavesdropping was equal to 125 with 20 % decoy states and 82 with 50% decoy states for mean photon number of 0.794 for signal states and 1.588 for decoy states.
In this work, the modified Lyapunov-Schmidt reduction is used to find a nonlinear Ritz approximation of Fredholm functional defined by the nonhomogeneous Camassa-Holm equation and Benjamin-Bona-Mahony. We introduced the modified Lyapunov-Schmidt reduction for nonhomogeneous problems when the dimension of the null space is equal to two. The nonlinear Ritz approximation for the nonhomogeneous Camassa-Holm equation has been found as a function of codimension twenty-four.
Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show More