The nuclear ground-state structure of some Nickel (58-66Ni) isotopes has been investigated within the framework of the mean field approach using the self-consist Hartree-Fock calculations (HF) including the effective interactions of Skyrme. The Skyrme parameterizations SKM, SKM*, SI, SIII, SKO, SKE, SLY4, SKxs15, SKxs20 and SKxs25 have been utilized with HF method to study the nuclear ground state charge, mass, neutron and proton densities with the corresponding root mean square radii, charge form factors, binding energies and neutron skin thickness. The deduced results led to specifying one set or more of Skyrme parameterizations that used to achieve the best agreement with the available experimental data.
The electric quadrupole moments for some scandium isotopes (41, 43, 44, 45, 46, 47Sc) have been calculated using the shell model in the proton-neutron formalism. Excitations out of major shell model space were taken into account through a microscopic theory which is called core polarization effectives. The set of effective charges adopted in the theoretical calculations emerging about the core polarization effect. NushellX@MSU code was used to calculate one body density matrix (OBDM). The simple harmonic oscillator potential has been used to generate the single particle matrix elements. Our theoretical calculations for the quadrupole moments used the two types of effective interactions to obtain the best interaction compared with the exp
... Show MoreThe calculations of the shell model, based on the large basis, were carried out for studying the nuclear 29-34Mg structure. Binding energy, single neutron separation energy, neutron shell gap, two neutron separation energy, and reduced transition probability, are explained with the consideration of the contributions of the high-energy configurations beyond the model space of sd-shell. The wave functions for these nuclei are used from the model of the shell with the use of the USDA 2-body effective interaction. The OBDM elements are computed with the use of NuShellX@MSU shell model code that utilizes the formalism of proton-neutron.
The electric quadrupole moments for some nitrogen isotopes (12,14,15,16,18N) are
studied by shell model calculations with the proton-neutron formalism. Theoretical
calculations performed using the different set of effective charges due to the core
polarization effect. The effective charges in the p-shell nuclei are found to be
slightly different from those in the sd-shell nuclei. Most of the results we have
obtained are underestimated with the measured data for the isotopes considered in
this work.
We employ a simple effective nucleon-nucleon interaction for sd-shell model calculations derived from the Reid soft-core potential folded with two-body correlation functions which take account of the strong short-range repulsion and large tensor component in the Reid force. Shell model calculations for ground and low lying energy states of neutron rich oxygen isotopes 18-28O are performed using OXBASH code. Generally, this interaction predicts correct ordering of levels, yields reasonable energies for ground states of considered isotopes and predicts very well the newly observed excitation energy of
in 26O. Besides, it produces reasonable energy spectra for 23-27O and compressed energy spectra for 18-22O isotopes. This is mainly due e
In this study a DFT calculation on cyclopropanone, cyclopropandione and cyclopropantrione molecules was performed using the basis function 6-31G ** / MP2 and exchange correlation potential B3-LYP. The results showed that the ground state of all molecules geometry belong to the point group ð¶2ð‘£where a vibronic coupling between the vibrational motion with the electronic ground state in the molecule C3O3 this leads to a reduction in symmetry of the molecule fromð·3â„Žto ð¶2ð‘£, the driving force of this process is accessing to the electronic configuration complies with Hückel aromatic systems with two electrons. Also in this, study the normal modes of vibration, frequencies, intensities and symm
... Show MoreIn the current study, the observations depended on some nuclear properties of Germanium isotopes that are used for multiple purposes by studying transverse sections when interacting with charged particles such as alpha and proton particles and their interaction with gamma rays of conjugal isotopes relative to the stability of the nucleus with other nuclei. By calculating the cross sections of the (α, ) , (γ,x)0-NN-1, (γ,2n) , (α,p) reactions of isotope. Nuclear reactions in the newer global libraries (EXFOR, ENDF, JEF, JEFF, GENDL) have been published to identify appropriate energies in calculating the inverse nuclear re
... Show MoreIn this study, Mn-Ni Ferrite was prepared by using two composites of manganese ferrite ( MnFe2o4 ) and Nicle Ferrite ( NiFe2O4) tested by X-Ray diffraction (XRD) method. The dielectric constant (ðœ€Ì…) and the dielectric loss tangent (ð‘¡ð‘Žð‘› ð›¿) were studied for the ferrite system prepared at different frequencies (100, 200… and 5000 kHz). It was found that the values of (ðœ€Ì…) and (ð‘¡ð‘Žð‘› ð›¿) decrease with the increase of frequencies.
TThe property of 134−140Neodymium nuclei have been studied in framework Interacting Boson Model (IBM) and a new method called New Empirical Formula (NEF). The energy positive parity bands of 134−140Nd have been calculated using (IBM) and (NEF) while the negative parity bands of 134−140Nd have been calculated using (NEF) only. The E-GOS curve as a function of the spin (I) has been drawn to determine the property of the positive parity yrast band. The parameters of the best fit to the measured data are determined. The reduced transition probabilities of these nuclei was calculated. The critical point has been determined for 140Nd isotope. The potential energy surfaces (PESs) to the IBM Hamiltonian have been obtained using the intrin
... Show MoreIn this study, mean free path and positron elastic-inelastic scattering are modeled for the elements hydrogen (H), carbon (C), nitrogen (N), oxygen (O), phosphorus (P), sulfur (S), chlorine (Cl), potassium (K) and iodine (I). Despite the enormous amounts of data required, the Monte Carlo (MC) method was applied, allowing for a very accurate simulation of positron interaction collisions in live cells. Here, the MC simulation of the interaction of positrons was reported with breast, liver, and thyroid at normal incidence angles, with energies ranging from 45 eV to 0.2 MeV. The model provides a straightforward analytic formula for the random sampling of positron scattering. ICRU44 was used to compile the elemental composition data. In this
... Show More