In this work the parameters of plasma (electron temperature Te,
electron density ne, electron velocity and ion velocity) have been
studied by using the spectrometer that collect the spectrum of
plasma. Two cathodes were used (Si:Si) P-type and deposited on
glass. In this research argon gas has been used at various values of
pressures (0.5, 0.4, 0.3, and 0.2 torr) with constant deposition time
4 hrs. The results of electron temperature were (31596.19, 31099.77,
26020.14 and 25372.64) kelvin, and electron density (7.60*1016,
8.16*1016, 6.82*1016 and 7.11*1016) m-3. Optical properties of Si
were determined through the optical transmission method using
ultraviolet visible spectrophotometer with in the range
(300 – 1100) nm.
Fresh water resources in terms of water quality is a crucial issue worldwide. In Egypt, the Nile River is the main source of fresh water in the country and monitoring its water quality is a major task on governments and research levels. In the present case study, the physical, chemical and algal distribution in Nile River was monitored over two seasons (winter and summer) in 2019. The aims of the study were to check the seasonal variation among the different water parameters and also to check the correlations between those parameters. Water samples were collected from the Nile in Cairo governorate in EGYPT. The different physiochemical and microbiological properties in water samples were assessed. The studied parameters were included: te
... Show MoreIn the present study, nanoporous material type MCM-41 was prepared by the sol-gel technique and was used as a carrier for prednisolone (PRD) drug delivery. The structural properties of mesoporous were fully characterized by X-ray diffraction (XRD), N2 adsorption /desorption and Fourier-transform infrared (FTIR). The mass transfer in term of adsorption process (loading) and desorption process (releasing) properties were investigated. The maximum drug loading efficiency was equal to 38% and 47.5% at different concentrations. The PRD released was prudently studied in water media of pH 6.8 simulated body fluid (SBF) in according to "United State Pharmacopeia (USP38)". The results proved that the release of prednisolone from MCM-41
... Show MoreA new ligand 3-hydroxy-2-(3-(4-nitrobenzoyl) thiouriedo) propanoic acid (NTP) where synthesized by reaction of 4-nitro benzoyl isothiocyanate with serine amino acid. The ligand was characterized by FT-IR, NMR spectra and the elemental analysis. The transition metal complexes of this ligand where synthesize and characterized by UV-Visible spectra, FT-IR, magnetic suscpility, conductively measurement, The general formula [M (NTP) 2] where M+2= (Mn, Co, Ni, Cu, Zn, Cd, Hg,), the form of molecular for these complexes as tetrahedral except Cu has square planer.
The electronic characteristics, including the density of state and bond length, in addition to the spectroscopic properties such as IR spectrum and Raman scattering, as a function of the frequency of Sn10O16, C24O6, and hybrid junction (Sn10O16/C24O6) were studied. The methodology uses DFT for all electron levels with the hybrid function B3-LYP (Becke level, 3-parameters, Lee–Yang-Parr), with 6-311G (p,d) basis set, and Stuttgart/Dresden (SDD) basis set, using Gaussian 09 theoretical calculations. The geometrical structures were calculated by Gaussian view 05 as a supplementary program. The band gap was calculated and compared to the measured valu
... Show MoreCo-crystals are new solid forms of drugs that could resolve more than one problem associated with drugs formulations like solubility, stability, bioavailability, mechanical and tableting properties. A preliminary theoretical study for estimating the possible bonding between the co-crystal components (paracetamol and naproxen) was performed using the ChemOffice program. The results revealed a high possibility for bonding between paracetamol and naproxen and indicated the ability of molecular mechanics study to predict the co-crystal design.
In this work, four different methods were used for the preparation of three different ratios 1:1, 2:1, and 1:2 of paracetamol:naproxen co-crystals. The four
... Show MoreSnO2 thin films of different two thicknesses were prepared an glass substrate by DC magnetron sputtering. The crystal structure and orientation of the films were investigated by XRD patterns. All the deposited films are polycrystalline. The grain size was calculated as 25.35, 28.8 nm. Morphological and compositions of the films were performed by SEM and EDX analyses respectively. The films appeared compact and rougher surface in nature. The allowed direct band gap was evaluated as 3.85 eV, and other optical constants such as refractive index, extinction coefficient, real and imaginary parts of dielectric constants were determined from transmittance spectrum in the wavelength range (300-900) nm and also analyzed.
TiO2 thin films were deposited by reactive d.c magnetron sputtering method on a glass substrate with various ratio of gas flow (Oxygen /Argon) (50/50, 100/50 and 150/50) at substrate temperature 573K. It can be observe that the optical energy gap of TiO2 thin films dependent on the ratio of gas flow (oxygen/argon), it varies between (3.45eV-3.57eV) also it is seen that the optical constants (α, n, K, εr and εi ) has been varied with the change of the ratio of gas flow (Oxygen /Argon).
The current study was conducted to investigate Annona fruit pulp effects on the levels of various physiological biomarkers linked with insulin-dependent diabetes mellitus after disease induction in mice, as well as indications of oxidative stress and male hormones. The rats were separated into four groups, three of which were given Alloxan (90 mg/kg body weight) to induce diabetes, while the fourth served as a negative control. The first group of diabetic mice received no therapy, the second received metformin (600 mg/kg body weight) and the third received Annona fruit puree. The mice were sacrificed at the end of the experiment, to acquire blood and tissue samples from the liver, kidneys and spleen. The first untreated gro
... Show More