The Dielectric properties of EP/TiO2 and MgO nanocomposite at
a frequency range of (102-106 Hz) were studied. The composite were
prepared with the state volume ratio (0, 0.05, 0.1) for EP/TiO2 and
MgO respectively. The impedance, dielectric constant and dielectric
loss were found decrease with frequency increase.
Titanium-dioxide (TiO2) nanoparticles suspended in water, and ethanol based fluids have been prepared using one step method and characterized by scanning electron microscopy (SEM), and UV–visible spectrophotometer. The TiO2 nanoparticles were added to base fluids with different volume concentrations from 0.1% to1.5% by dispersing the synthesized nanoparticles in deionized water and ethanol solutions. The effective thermal conductivity, viscosity and pH of prepared nanofluids at different temperatures from 15 to 30 oC were carried out and investigated. It was observed that the thermal conductivity, pH, and viscosity of nanofluids increases with the increase in TiO2 nanoparticle volume fraction
... Show MoreThe dielectric properties of polyvinyl chloride (PVC)-MnCl2 composite were studied by using the impedance technique. The measurements were carried out as a function of frequency in the range from 10 Hz to 13 MHz and temperature range from 27oC to 55oC. Using a composite of 20 wt. % MnCl2 by weight, it was found that the dielectric constants and the dielectric loss of the prepared films increase with the increasing temperature at law frequency and the enhancement of the ionic conduction which is confirmed by the increase the of AC. conductivity and the decrease of the activation energy of the conduction mechanism at high applied frequency. The observed relaxation and polarization effects of composite a
... Show MoreUsing three-point bending experiments, the effect of the particle size of SiO2 on the flexural properties of epoxy composites was investigated. Young modulus and flexural strength were studied for different weight percentage of filler (2,4,6,8 and 10) wt%.The size of SiO2 particles varied from micro (100um) to nano (12nm) .
Flexural strength and Young modul were found to increase with the filler content, but when the particle size decreased to the nanoscale, the Young module increased. Flexural strength was higher for microcomposites than nanocomposites.
Overlapped have been prepared from epoxy resin material added to carbon Nanotube and percentages weight (0.1, 0.05, 0.01) % Studied the mechanical properties of the composite (bending, tensile an d hardness) has been found that the Flexural and tensile modulus of the composites were higher than the pure epoxy resin this may be due to the high mechanical strength of carbon nano tube (CNT). The hardness of the epoxy carbon Nanotube composites increased and the reason is due to increased overlap and stacking between the additives and material basis, which reduces the movement of polymer molecules leading to increased resistance to scratching material and cutting, will become more resistance to plastic deformation.
In this research,we are studied impact strength, bending and compression strength of composites including the epoxy resin as a matrix , with gawaian red wood flour ,Russian white wood flour ,glass powder and rock wool fibers as reinforcement materials with volume fraction (20%) for all samples,and compared them in different conditions of temperatures. The results have shown that the impact strength increased with the reinforcement with (particles and fibers),and at high temperatures for all samples prepared,and also observed an increase in elasticity coefficient of epoxy composites filled with (different particles) and decreased in elasticity coefficient of epoxy com
... Show MoreThis search study the effect of particle size of graphite on the mechanical and thermal properties of epoxy composites, where graphite adopted with particle sizes (45,53,75) ?m, respectively, and the percentages by weight (0,1,3,5,7,9)% for each size of this three particle sizes.Mechanical properties represented by the bending (three-point bending) and through which the conclusion is bending stress and modulus of elasticity, thermal properties were either through thermal conductivity tests.The results showed that the ratio(1%) is the maximum value of bending stress at the three particle size and the (45 ?m) is the maximum.Thermal conductivity result show is the maximum value at ratio (1%) of particle size(53 ?m)
Additive aluminum powder to the polystyrene to prepare the composites Polystyrene– Aluminum.The samples were prepared by using mechanical compressed method at low pressure and a temperature 120°C. Measurements of absorbance and reflectance spectra were carried out by UV-Visible spectrophotometer , the effect of additive aluminum on the optical band gap Eop and optical constants ( refractive index n, extinction coefficient k ,dielectric constant ε and optical conductivity σop) were studied for the prepared composites . Results showed a decrease in the Eop with increasing perc
... Show MoreIn this work, zinc oxide nanoparticles (ZnONPs) and sawdust/epoxy composite (20:80) were mixed using a simple molding method with different ZnONPs concentrations of (0.1, 0.3, 0.5, 0.7, and 1.0 %). The samples of the nanocomposites were characterized by the Scanning Electron Microscopy (SEM) technique to demonstrate the homogeneity of the prepared ZnONPs/nanocomposites. The photocatalytic activity of the samples was examined using the methylene blue (MB) dye as a pollutant solution, through evaluation of the efficiency of the prepared compound in the treatment of organic pollutants under illumination by sunlight. The photocatalytic results showed that after 240 minutes of exposure to sunlight, the sample prepared using (0.5 vol.% of ZnON
... Show MoreBlends of Polymethyl methacrylate (PMMA)/polyvinyl alcohol (PVA) doped with 2% weight percentage of Sn were prepared with different blend ratios using casting technique. The measurements of A.C conductivity σa.c within the frequency range (25kHz – 5MHz) of undoped and Sn doped PMMA/PVA blends obeyed the relationship σ= Aws were the value of s within the range 0 > s > 1. The results showed that σa.c increases with the increase of frequency. The exponent s showed preceding increase with the increase of PVA content for PMMA/PVA blends doped with Sn. The dielectric constant, dielectric loss, A.C electrical conductivity are varied with the concentration of PVA in the blend and frequency of applied electrical field.