The investigation of the effect of tempering on thermal analysis of
Al-Ti-Si alloy and its composites with MgO and SiC particles was
performed. Thermal analysis was performed before and after
tempering by DSC scan. Optical microscopy was used to identify the
phases and precipitations that may be formed in base alloy and
composites. X-ray diffraction test indicated that the Al3Ti is the main
phase in Al-Ti-Si alloy in addition to form Al5Ti7Si12 phase. Some
chemical reactions can be occurred between reinforcements and
matrix such as MgO.Al2O3 in Al-Ti/MgO, and Al4C3 and Al(OH)3 in
Al-Ti/SiC composite. X-ray florescence technique is used to
investigate the chemical composition of the fabricated specimens.
Heat treatment (Tempering) changes the microstructure of base alloy
and its composites which was assessed by DSC scan. Generally,
three main peaks appeared in DSC represented by GP zone, S phase
(precipitations) and dissolution of phases or precipitations. After
tempering, composite with SiC particles showed better results than
base alloy and composite with MgO. Since the optical microscopy
revealed reforming the stable phase Al3Ti with evaporation some
gases from composite. DSC analysis showed the stability of
composite with SiC was up to 270oC.
Many cities suffer from the large spread of slums, especially the cities of the Middle East. The purpose of the paper is to study the reality of informal housing in Al-Barrakia and the most important problems that it suffers from. The paper also seeks to study the presence or absence of a correlation between urban safety indicators and urban containment indicators as one of the methods of developing and planning cities. This can be achieved through sustainable urban management. The slums are a source of many urban problems that threaten the security and safety of the residents and represent a focus for the concentration of crimes and drugs. The paper seeks to answer the following question: How can urban safety be improved through urban cont
... Show MoreThis paper focuses on Load distribution factors for horizontally curved composite concrete-steel girder bridges. The finite-element analysis software“SAP2000” is used to examine the key parameters that can influence the distribution factors for horizontally curved composite steel
girders. A parametric study is conducted to study the load distribution characteristics of such bridge system due to dead loading and AASHTO truck loading using finite elements method. The key parameters considered in this study are: span-to-radius of curvature ratio, span length, number of girders, girders spacing, number of lanes, and truck loading conditions. The results have shown that the curvature is the most critical factor which plays an important
X-ray diffractometers deliver the best quality diffraction data while being easy to use and adaptable to various applications. When X-ray photons strike electrons in materials, the incident photons scatter in a direction different from the incident beam; if the scattered beams do not change in wavelength, this is known as elastic scattering, which causes amplitude and intensity diffraction, leading to constructive interference. When the incident beam gives some of its energy to the electrons, the scattered beam's wavelength differs from the incident beam's wavelength, causing inelastic scattering, which leads to destructive interference and zero-intensity diffraction. In this study, The modified size-strain plot method was used to examin
... Show MoreThe modern steer-by-wire (SBW) systems represent a revolutionary departure from traditional automotive designs, replacing mechanical linkages with electronic control mechanisms. However, the integration of such cutting-edge technologies is not without its challenges, and one critical aspect that demands thorough consideration is the presence of nonlinear dynamics and communication network time delays. Therefore, to handle the tracking error caused by the challenge of time delays and to overcome the parameter uncertainties and external perturbations, a robust fast finite-time composite controller (FFTCC) is proposed for improving the performance and safety of the SBW systems in the present article. By lumping the uncertainties, parameter var
... Show More