Porous silicon (PS) layers are prepared by anodization for
different etching current densities. The samples are then
characterized the nanocrystalline porous silicon layer by X-Ray
Diffraction (XRD), Atomic Force Microscopy (AFM), Fourier
Transform Infrared (FTIR). PS layers were formed on n-type Si
wafer. Anodized electrically with a 20, 30, 40, 50 and 60 mA/cm2
current density for fixed 10 min etching times. XRD confirms the
formation of porous silicon, the crystal size is reduced toward
nanometric scale of the face centered cubic structure, and peak
becomes a broader with increasing the current density. The AFM
investigation shows the sponge like structure of PS at the lower
current density porous begin to form on the crystalline silicon, when
the current density increases, pores with maximum diameter are
formed as observed all over the surface. FTIR spectroscopy shows a
high density of silicon bonds, it is very sensitive to the surrounding
ambient air, and it is possible to oxidation spontaneously.
In this paper, a miniaturized 2 × 2 electro-optic plasmonic Mach– Zehnder switch (MZS) based on metal–polymer–silicon hybrid waveguide is presented. Adiabatic tapers are designed to couple the light between the plasmonic phase shifter, implemented in each of the MZS arms, and the 3-dB input/output directional couplers. For 6 µm-long hybrid plasmonic waveguide supported by JRD1 polymer (r33= 390 pm/V), a π-phase shift voltage of 2 V is obtained. The switch is designed for 1550 nm operation wavelength using COMSOL software and characterizes by 2.3 dB insertion loss, 9.9 fJ/bit power consumption, and 640 GHz operation bandwidth
Optical losses represent one of the primary obstacles to increasing the efficiency of silicon solar cells. The recommended solution to minimize optical losses is the use of plasmonic metal nanoparticles; however, they act as recombination centers within the solar cell construction, leading to a decrease in performance. The goal of this article is to introduce cobalt/graphene nanoparticles into the solar cell to minimize the optical losses. An ultra-thin film silicon PIN solar cell of dimensions (400 ×400 ×900) nm3 with ring metal contact shape was designed and numerically investigated using COMSOL Multiphysics software version 6.2 by the finite element method (FEM). Core/shell cobalt-graphene (Co/Gr) nanoparticles are periodically int
... Show MoreIn this research tri metal oxides were fabricated by simple chemical spray pyrolysis technique from (Sn(NO3)2.20 H2O, Zn(NO3)2.6 H2O, Cd(NO3)2.4 H2O) salts at concentration 0.1M with mixing weight ratio 50:50 were fabricated on silicon substrate n-type (111). (with & without the presence of grooves by the following diemensions (20μm width, 7.5μm depth) with thickness was about ( 0.1 ±0.05 µm) using water soluble as precursors at a substrate temperature 550 ºC±5, with spray distance (15 cm) and their gas sensing properties toward H2S gas at different concentrations (10,50,100,500 ppmv) in air were investigated at room te
... Show MorePositron annihilation lifetime has been utilized for the first time to investigate the free - volume hole properties in thermolumenscent dosimeter ( TLD ) as a function of gamma-dosc . The hole volume, free volume fraction determined form orthopsitronium lifetime are found to be ?lamatically increase to large values , and then to minimum values as a function ofgamma-dose . The free - volume holes size is found to be 0.163nm’ and to have maximum of 0.166nm^ at the gamma-dose of 0.1 and 0.8 Gy, respectively-
The extraction of Eucalyptus oil from Iraqi Eucalyptus Camadulensis leaves was studded using water distillation methods. The amount of Eucalyptus oil has been determined in a variety of extraction temperature and agitation speed. The effect of water to Eucalyptus leaves (solvent to solid) ratio and particle size of Eucalyptus leaves has been studied in order to evaluate the amount of Eucalyptus oil. The optimum experimental condition for the Eucalyptus oil extraction was established as follows: 100 C extraction temperature, 200 rpm agitation speed; 0.5 cm leave particle size and 6: 1 ml: g amount of water to eucalyptus leaves Ratio.
ABSTRACT
Learning vocabulary is a challenging task for female English as a foreign language (EFL) students. Thus, improving students’ knowledge of vocabulary is critical if they are to make progress in learning a new language. The current study aimed at exploring the vocabulary learning strategies used by EFL students at Northern Border University (NBU). It also aimed to identify the mechanisms applied by EFL students at NBU University to learn vocabulary. It also aimed at evaluating the approaches adopted by EFL female students at Northern Border University (NBU) to learn a language. The study adopted the descriptive-analytical method. Two research instruments were developed to collect data namely, a survey qu
... Show More