Preferred Language
Articles
/
ijp-161
Effect of thickness on the optical properties of ZnO thin films prepared by pulsed laser deposition technique (PLD)

Zinc Oxide (ZnO) thin films of different thickness were prepared
on ultrasonically cleaned corning glass substrate, by pulsed laser
deposition technique (PLD) at room temperature. Since most
application of ZnO thin film are certainly related to its optical
properties, so the optical properties of ZnO thin film in the
wavelength range (300-1100) nm were studied, it was observed that
all ZnO films have high transmittance (˃ 80 %) in the wavelength
region (400-1100) nm and it increase as the film thickness increase,
using the optical transmittance to calculate optical energy gap (Eg
opt)
show that (Eg
opt) of a direct allowed transition and its value nearly
constant (~ 3.2 eV) for all film thickness (150, 180, 210, and 240)
nm, so Zn0 thin films were used as a transparent conducting oxide
(TCO) in various optoelectronic application such as a window in a
thin film solar cells.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue May 01 2012
Journal Name
Iraqi Journal Of Physics
Studying the optical properties of ( Cr2O3:I ) thin films prepared by spray pyrolysis technique

Undoped and Iodine (I)–doped chrome oxide (Cr2O3)thin films have been prepared by chemical spray pyrolysis technique at substrate temperatures(773K) on glass substrate. Absorbance and transmittance spectra have been recorded as a function of wavelength in the range (340-800 nm) in order to study the optical properties such as reflectance, Energy gap of allowed direct transition, extinction coefficient refractive index, and dielectric constant in real and imagery parts all as a function of wavelength. It was found that all the investigated parameters affect by the doping ratios.

View Publication Preview PDF
Publication Date
Wed Mar 08 2023
Journal Name
Journal Of Wasit For Science And Medicine
Study on physical properties of nanostructured ZnO prepared by pulse laser deposition

Zinc Oxide thin film of 2 μm thickness has been grown on glass substrate by pulsed laser deposition technique at substrate temperature of 500 oC under the vacuum pressure of 8×10-2 mbar. The optical properties concerning the absorption, and transmission spectra were studied for the prepared thin film. From the transmission spectra, the optical gap and linear refractive index of the ZnO thin film was determined. The structure of the ZnO thin film was tested with X-Ray diffraction and it was formed to be a polycrystalline with many peaks.

Crossref
View Publication Preview PDF
Publication Date
Mon Feb 25 2019
Journal Name
Iraqi Journal Of Physics
Effects of multi- Deposition on the structural and optical properties of CdS nanocrystalline thin film prepared by CBD technique.

Cadmium sulfide (CdS) nanocrystalline thin films have been prepared by chemical bath deposition (CBD) technique on commercial glass substrates at 70ºC temperature. Cadmium chloride (CdCl2) as a source of cadmium (Cd), thiourea (CS(NH2)2) as a source of sulfur and ammonia solution (NH4OH) were added to maintain the pH value of the solution at 10. The characterization of thin films was carried out through the structural and optical properties by X-ray diffraction (XRD) and UV-VIS spectroscopy. A UV-VIS optical spectroscopy study was carried out to determine the band gap of the nanocrystalline CdS thin film and it showed a blue shift with respect to the bulk value (from 3.9 - 2.4eV). In present w

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Jul 31 2021
Journal Name
Iraqi Journal Of Science
Fabrication of Cr2O3: ZnO Nanostructure Thin Film Prepared by PLD Technique as NH3 Gas Sensor

     Chromium oxide (Cr2O3) doped ZnO nanoparticles were prepared by pulsed laser deposition (PLD) technique at different concentration ratios (0, 3, 5, 7 and 9 wt %) of ZnO on glass substrate. The effects of ZnO dopant on the average crystallite size of the synthesized nanoparticles was examined By X-ray diffraction. The morphological features were detected using atomic force microscopy (AFM). The optical band gap value was observed to range between 2.78 to 2.50 eV by UV-Vis absorption spectroscopy, with longer wavelength shifted in comparison with that of the bulk Cr2O3 (~3eV). Gas sensitivity, response, and recovery times of the sensor in the presence of NH3

... Show More
Scopus (3)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Dec 29 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Structure and Optical Properties of BhSe3 Thin Films Prepared by Chemical Bath Deposition Method

Thin films of  BhSe3  have being deposited on glass substrates of

about 80 - 172 ± 14 nm thickness from an aqueous solution bath at temperature 293 K for period 0.5 to 6.0 hours  using alchemical bath deposition method .

The  films  are  characterized   by  X-ray  diffraction,     X-ray

florescent techniques and optical transmittance spectra measurements in the rang 350 - 400 nm at 293 K. And shows that as deposited  films are amorphous and a  transition to polycrystalline state has taken place after  annealing  them  at  373  K,  for  30  minutes,  But  they  will  be dan1aged

... Show More
View Publication Preview PDF
Publication Date
Wed Apr 12 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Optical Properties of Aluminum Doped CdO Thin Films Prepared by Vacuum Thermal Evaporation Technique

   In this work, thin films of undoped and Al-doped CdO with (0.5, 1 and 2) wt.%  were prepared by using thermal vacuum evaporation on glass substrate at room  temperature. The optical absorption coefficient (α) of the films was determined from transmittance spectra in the range of wavelength (400-1100) nm. The spectral transmission and the optical energy band gap decrease from 75% and 2.24 eV to 20%  and 2.1 eV respectively depending upon the Al content in the films, also our studies include the calculation of  the optical constants (refractive index, extinction coefficient, real and imaginary part of dielectric constant) as a function of photon energy.  It is evaluated that the optical band gap of

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 15 2015
Journal Name
Journal Of Physical Vapor Deposition Science And Technology (jpvdst)
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Effect of Annealing Temperature on the Structural and Optical Properties of The CdO Thin Films Prepared By Vacuum Evaporation Thermal Technique

      Cadmium Oxide films have been prepared by vacuum evaporation technique on a glass substrate at room temperature. Structural and optical properties of the films are studied at different annealing temperatures (375 and 475) ËšC, for the thickness (450) nm at one hour. The crystal structure of the samples was studied by X- ray diffraction. The highest value of the absorbance is equal to (78%) in the wavelength (530) nm, at annealing temperature (375) ËšC. The value of at a rate of deposition is (10) nm/s. The value of optical energy gap found is equal to (2.22) eV.

View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Effect of Thickness and Thermal Annealing on Optical Properties of Sb Thin films

Antimony (Sb) films are fabricated by depositing (Sb) on glass substrates at room
temperature by the method of vacuum evaporation with thickness (0.25 and 0.51m),
with rate of deposition equal to (2.77Å/sec), the two samples are annealed in a
vacuum for one hour at 473K. The optical constants which are represented by the
refractive index (n), extinction coefficient (k) were determined from transmittance
spectram in the near Infrared(2500-3500 )nm regions. The tests have been shown
that the optical energy gap increases with increasing of annealing temperature for
the two samples.

View Publication Preview PDF
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Physics: Conference Series
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
View Publication