Copper nanoparticles (CuNPs) were prepared with different diameters by sonoelectrodeposition technique using Electrodeposition process coupled with high-power ultrasound horn (Sonoelectrodeposition). The particle diameter of the CuNPs was adjusted by varying CuSO4 solution acidity (pH) and current density. The morphology and structure of the CuNPs were examined by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). It was found that the size of the produced copper nanoparticles ranged between 22 to 77 nm, where the diameter of CuNPs increases with reduction the solution acidity from 0.5 to 1.5 pH and increasing the current density of the deposition from 100 to 400 nm. Finally the produced CuNPs were pressed to fabricate disc filter and then the permeability, porosity, and filtration efficiency were determined which showed good efficiency.
Root-finding is an oldest classical problem, which is still an important research topic, due to its impact on computational algebra and geometry. In communications systems, when the impulse response of the channel is minimum phase the state of equalization algorithm is reduced and the spectral efficiency will improved. To make the channel impulse response minimum phase the prefilter which is called minimum phase filter is used, the adaptation of the minimum phase filter need root finding algorithm. In this paper, the VHDL implementation of the root finding algorithm introduced by Clark and Hau is introduced.
VHDL program is used in the work, to find the roots of two channels and make them minimum phase, the obtained output results are
The denoising of a natural image corrupted by Gaussian noise is a problem in signal or image processing. Much work has been done in the field of wavelet thresholding but most of it was focused on statistical modeling of wavelet coefficients and the optimal choice of thresholds. This paper describes a new method for the suppression of noise in image by fusing the stationary wavelet denoising technique with adaptive wiener filter. The wiener filter is applied to the reconstructed image for the approximation coefficients only, while the thresholding technique is applied to the details coefficients of the transform, then get the final denoised image is obtained by combining the two results. The proposed method was applied by usin
... Show MoreLength of plasma generated by dc gas discharge under different vacuum pressures was studied experimentally. The cylindrical discharge tube of length 2m was evacuated under vacuum pressure range (0.1-0.5) mbar at constant external working dc voltage 1500V. It was found that the plasma length (L) increased exponentially with increasing of background vacuum air pressure. Empirical equation has been obtained between plasma length and gas pressure by using Logistic model of curve fitting. As vacuum pressure increases the plasma length increases due to collisions, ionizations, and diffusions of electrons and ions.
The extraction of pesticides is a critical and urgent issue in the preparation for and determination of pesticide residues. The lack of a quick, easy, and successful extraction process is the most critical and challenging problem, even if diagnostic tools have improved and pesticide residues have been better understood. This study contrasted the QuEChERS method, which uses gas chromatography with a flame ionization detector, with the LLE method, which uses liquid-liquid extraction, in order to extract pyridaben from cucumbers and spiromesifen from tomatoes. The GC-FID device was employed to ascertain the spiromesifen LOD and LOQ, which were 0.002 μg mL-1 and 0.00
Thin films ZrO2: MgO nanostructure have been synthesized by a radio frequency magnetron plasma sputtering technique at different ratios of MgO (0,6, 8 and 10)% percentage to be used as the gas sensor for nitrogen dioxide NO2. The samples were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and sensing properties were also investigated. The average particle size of all prepared samples was found lower than 33.22nm and the structure was a monoclinic phase. The distribution of grain size was found lower than36.3 nm and uninformed particles on the surface. Finally, the data of sensing properties have been discussed, where the
... Show MoreIn this work, a reactive DC magnetron sputtering technique was used to prepare TiO2 thin films. The variation in argon and oxygen gases mixing ratios (4:1, 2:1, 1:1, 1:2, 1:4) was used to achieve optimal properties for gas sensing. In addition, an analysis of the optical XRD properties of TiO2 thin films is presented. High-quality and uniform nanocrystalline films were obtained at a working gas pressure of 0.25 mbar and 1:4 (Ar/O2) gas mixture. The optical properties showed a transparent thin film with uniform adherence to the substrate. The average transmission of the TiO2 films deposited on the glass substrates was higher than 95% over the range of 400 to 800 nm.
... Show MoreIn this research the effect of laser energy by using argon gas on the some physical properties of semiconductor film of TiO2, was studied used Q-Switch Nd:YAG laser in different energies (600-1000) mJ with temperature 100 0C for glass substrate under vacuum nearly 10-3 - - , and by AFM test the roughness of films increased when the energy of laser increased too. The values of roughness between (6.77-13) nm, therefore the thicknesses increased to change from (34.88 - 165.48) nm, so the absorption of film increased because of the thickness of the film increased and we can get the optical energy gap between (3.6-3.9) eV.
The study aims to biosynthesized of sliver nanoparticle from aqueous extract of olive leave and evaluate the effectiveness of the synthesis AgNPs against isolated fungi. The study mediating fifty samples were taken from various tools in laboratory from five hospitals in Baghdad. Four species of fungi were identified depending on the morphological and microscopic characteristics. The most common isolated fungi based on their frequency ratio were as follows Aspergillus niger 87.5%, Aspergillus flavus 62.5%, Aspergillus fumigatus 53.5% and Aspergillus nidulans 37.7%.The Biosynthesis of silver nanoparticle developed a rapid, eco-friendly and convenient green method for the stable silver nanoparticles (AgNP
... Show More