PVA, Starch/PVA, and Starch/PVA/sugar samples of different
concentrations (10, 20, 30 and 40 % wt/wt) were prepared by casting
method. DSC analysis was carried; the results showed only one glass
transition temperature (Tg) for the samples involved, which suggest
that starch/PVA and starch/PVA/sugar blends are miscible. The
miscibility is attributed to the hydrogen bonds between PVA and
starch. This is in a good agreement with (FTIR) results. Tg and Tm
decrease with starch and sugar content compared with that for
(PVA). Systematic decrease in ultimate strength, due to starch and
sugar ratio increase, is attributed to (PVA), which has more hydroxyl
groups that made its ultimate strength higher than that for
starch/PVA, and starch/PVA/sugar blends. It is observed from water
uptake tests that the solubility time decreases with starch ratio; it is
attributed to decrease in hydroxyl groups caused by PVA ratio
decrease. The inter- and inter-molecular bonds of the hydroxyl
groups enhanced the solubility process of the starch/PVA blends in
water. The water immersion causes hydrogen bonds (inter and
intermolecular bonds) to decompose, that increases the film
solubility. Water absorption and capacity of degradability are most
important in biodegradable materials. The results suggest the samples
that have undergone investigation, can be used for shopping, and
food packaging.
The study of soil burial for the sample at (3cm) depth, and at (13cm)
depth has exhibited weight loss increase with soil burial time. The
biodegradability rapidly increases at the first (6-7) weeks; it is found
that the weight loss at (3cm) depth is greater than that at (13cm) that
was attributed to the differences in the availability of oxygen ratio. It
is found that PVA undergoes lowest weight loss, the weight loss
changes with starch, and sugar content. In dry soil, the weight loss is
lower. The results proved that the biodegradation decreases with soil
burial time after seven weeks of burial. It is concluded that the
samples involved are biodegradable material that can be used for
packaging applications and biologically friendly synthetic polymer
blends to solve the solid waste accumulation problem.
Bilosomes are nanocarriers that contain bile salts in their vesicular bilayer, thereby enhancing their flexibility and durability in the gastrointestinal tract. Unlike conventional vesicular systems they provide distinct advantages such as streamlined manufacturing procedures, cost efficiency, and improved stability. The main objective of this study was to attain a comparison of the pharmacokinetic parameters of nisoldipine (NSD) after administering an ordinary NSD suspension and an NSD-loaded bilosome suspension. The study used 60 Swiss albino rats weighing 200±15 g and divided into two groups (n=30 each). A dose of 2.2 mg/kg of NSD was administered from the ordinary NSD suspension to the rats of the first group and the same dose
... Show MoreThis paper describes the development of a simple spectrophotometric determination of bismuth III with 4-(2-pyridylazo) resorcinol (PAR) in aqueous solution in the presence of cetypyridinium chloride surfactant at pH 5 which exhibits maximum absorption at 532 nm. Beer's law is obeyed over the range 5-200 µg/25 mL. i.e. 0.2-8 ppm with a molar absorptivity of 3×104 l.mol-1.cm-1 and Sandell's sensitivity index of 0.0069 µg.cm-2. The method has been applied successfully in the determination of Bi (III) in waters and veterinary preparation.
Efficacy of Oregano Essential Oil Mouthwash in Reducing Oral Halitosis: A Randomized, Double-Blind Clinical Trial, Mohamed Saeed M Ali, Ayser Najah Mohammed*
One of the most important problems in the oil production process and when its continuous flow, is emulsified oil (w/o emulsion), which in turn causes many problems, from the production line to the extended pipelines that are then transported to the oil refining process. It was observed that the nanomaterial (SiO2) supported the separation process by adding it to the emulsion sample and showed a high separation rate with the demulsifiers (RB6000) and (sebamax) where the percentage of separation was greater than (90 and 80 )% respectively, and less than that when dealing with (Sodium dodecyl sulfate and Diethylene glycol), the percentage of separation was (60% and 50%) respectively.
The high proportion
... Show MoreThe aim of this work is to shed light on the importance of medicinal plants, especially those that have extracts that have a direct effect on human health. The study and identification of botany is necessary because human life has become closely linked to the life of plants as food . In addition to using plants as food, primitive man did not stop at this point, but rather developed their use to hunt prey and also used toxic plant materials in wars. With the passage of time, the ancient man was able to link the wild plants that cover the surface of the earth and the diseases that afflict him, so he used these plants or Parts of it are for treatment. A medicinal plant is defined as one or more of its parts that contain one or more che
... Show MoreThis study reports the formation, characterisation and biological evaluation of a Schiff base ligand and its corresponding metal complexes. The Schiff base ligand (HL) was prepared through a condensation reaction involving isonicotinohydrazide and N'-((1R,2R,4R,5S, E)-2,4-bis(4-chlorophenyl)-3-azabi cyclo[3.3.1]nonan-9-ylidene) isonicotinohydrazide (M) in EtOH solvent and (3-5) drops of conc. HCl. The interaction of HL with selected metal chlorides including Mn(+2), Co(+2), Ni(+2), Cu(+2) and Zn(+2) in a 2:1 (L:M) mole ratio resulted in the synthesis of complexes with the general formula [M(HL)Cl2] (where: M = Mn(+2),Co(+2) and Ni(+2)) and [M`(HL)Cl2] (where M` = Cu(+2) and Zn(+2)). The characterisation of the prepared compounds w
... Show More