Thin films of bulk heterojunction blend Ni-Phthalocyanine
Tetrasulfonic acid tetrasodium salt and dpoly
(3, 4-ethylenedioxythiophene) poly (styrenesulfonate) (NiPcTs:
PEDOT: PSS) with different (PEDOT:PSS) concentrations (0.5, 1, 2)
are prepared using spin coating technique with thickness 100 nm on
glass and Si substrate. The X-Ray diffraction pattern of NiPcTs
powder was studied and compared with NiPc powder, the pattern
showed that the structure is a polycrystalline with monoclinic phase.
XRD analysis of as-deposited (NiPcTs/PEDOT:PSS) thin films
blends in dicated that the film appeared at(100), (102) in
concentrations (0.5, 1) and (100) in concentration (2). The grain size
is increased with increasing (PEDOT:PSS) concentrations. FTIR
measurements for these bulk heterojunction blend thin films also
carried out in this work and gave good information about the bonds
and their locations. Sensor measurements of Si/NiPcTS:PEDOT:PSS
bulk heterojunctions blend thin films show a good sensitivity for NO2
gas Compared to NH3gas. The NiPcTS/PEDOT:PSS gas sensor
device work at room temperature than high temperature for NO2 gas
but good sensitivity at100ºC for NH3 gas and sensor work more
effectively in 0.5 concentration for both gases.
One of the main environmental problems which affect extensively the areas in the world is soil salinity. Traditional data collection methods are neither enough for considering this important environmental problem nor accurate for soil studies. Remote sensing data could overcome most of these problems. Although satellite images are commonly used for these studies, however there are still needs to find the best calibration between the data and real situations in each specified area. Landsat satellite (TM & ETM+) images have been analyzed to study soil pollution (Exacerbation of salinity in the soil without the use of abandoned agricultural for a long time) at west of Baghdad city of Iraqi country for the years 1990, 2001 & 2007. All of the th
... Show MoreAbstract. In this work, Bi2O3 was deposited as a thin film of different thickness (400, 500, and 600 ±20 nm) by using thermal oxidation at 573 K with ambient oxygen of evaporated bismuth (Bi) thin films in a vacuum on glass substrate and on Si wafer to produce n-Bi2O3/p-Si heterojunction. The effect of thickness on the structural, electrical, surface and optical properties of Bi2O3 thin films was studied. XRD analysis reveals that all the as deposited Bi2O3 films show polycrystalline tetragonal structure, with preferential orientation in the (201) direction, without any change in structure due to increase of film thickness. AFM and SEM images are used to investigate the influences of film thickness on surface properties. The optical measur
... Show MoreThis studies p- CuO / n - Si hete-rojunction was deposited by high vacuum thermal evaporation of Copper subjected to thermal oxidation at 300 oC on silicon. Surface morphology properties of The optical properties concerning the transmission spectra were studies for prepared thin films. this structure have been studied. XRD anaylsis discover that the peak at (𝟏𝟏𝟏-) and (111) plane are take over for the crystal quality of the CuO films. The band gap of CuO films is found to be 1.54 eV. The average grain size of is measured from AFM analysis is around 14.70 nm. The responsivity photodetector after deposited CuO appear increasing in response
Thin film solar cells are preferable to the researchers and in applications due to the minimum material usage and to the rising of their efficiencies. In particular, thin film solar cells, which are designed based one transition metal chalcogenide materials, paly an essential role in solar energy conversion market. In this paper, transition metals with chalcogenide Nickel selenide termed as (NiSe2/Si) are synthesized. To this end, polycrystalline NiSe2 thin films are deposited through the use of vacuum evaporation technique under vacuum of 2.1x10-5 mbar, which are supplied to different annealing temperatures. The results show that under an annealed temperature of 525 K,
... Show MoreGas lift is one of the artificial lift techniques which it is frequently implemented to raise oil production. Conventionally, the oil wells produce depending on the energy of reservoir pressure and solution gas which declines due to continuous production. Therefore, many oil wells after a certain production time become unable to lift oil to the surface. Thus, the continuity of production requires implementation of gas lift which works to decrease the average fluid density in the tubing by injection gas through the annulus into the tubing. This paper aims to get maximum oil production of an Iraqi giant oil field at optimum injected gas rate. The field is located in south of Iraq and in
The work in this paper focuses on the experimental confirming of the losses in photonic crystal fibers (PCF) on the transmission of Q-switched Nd:YAG laser. First HC-PCF was evacuated to 0.1 mbar then the microstructure fiber (PCF) was filled with He gas & gas. Second the input power and output power of Q-switched Nd:YAG laser was measured in hollow core photonic bandgap fiber (HCPCF). In this work loss was calculated in the hollow core photonic crystal fiber (HCPCF) filled with air then N2, and He gases respectively. It has bean observed that the minimum loss obtained in case of filling (HC-PCF) with He gas and its equal to 15.070 dB/km at operating wavelength (1040-1090) nm.