The Skyrme–Hartree–Fock (SHF) method with the Skyrme
parameters; SKxtb, SGII, SKO, SKxs15, SKxs20 and SKxs25 have
been used to investigate the ground state properties of some 2s-1d
shell nuclei with Z=N (namely; 20Ne, 24Mg, 28Si and 32S) such as, the
charge, proton and matter densities, the corresponding root mean
square (rms) radii, neutron skin thickness, elastic electron scattering
form factors and the binding energy per nucleon. The calculated
results have been discussed and compared with the available
experimental data.
The paper is devoted to solve nth order linear delay integro-differential equations of convolution type (DIDE's-CT) using collocation method with the aid of B-spline functions. A new algorithm with the aid of Matlab language is derived to treat numerically three types (retarded, neutral and mixed) of nth order linear DIDE's-CT using B-spline functions and Weddle rule for calculating the required integrals for these equations. Comparison between approximated and exact results has been given in test examples with suitable graphing for every example for solving three types of linear DIDE's-CT of different orders for conciliated the accuracy of the results of the proposed method.
Some nonlinear differential equations with fractional order are evaluated using a novel approach, the Sumudu and Adomian Decomposition Technique (STADM). To get the results of the given model, the Sumudu transformation and iterative technique are employed. The suggested method has an advantage over alternative strategies in that it does not require additional resources or calculations. This approach works well, is easy to use, and yields good results. Besides, the solution graphs are plotted using MATLAB software. Also, the true solution of the fractional Newell-Whitehead equation is shown together with the approximate solutions of STADM. The results showed our approach is a great, reliable, and easy method to deal with specific problems
... Show MoreThis paper presents the results of investigating the vibrational characteristics of oblate dish with and without framed structure . A finite element method, was applied to the dynamic analysis of oblate spheroidal shell. Different types of elements were considered in one dimension and two dimensions. It was found that the natural frequencies of oblate shells had two types of behavior against increasing the shell thickness and eccentricity, which are the membrane mode and bending mode –Since – the membrane modes natural frequencies tend to increase with the increasing the eccentricity of oblate, while the bending modes natural frequencies decrease with the increasing the eccentricity till reach the optimum eccentricity.
... Show More
The development of Japanese society passed through long historical stages and as a result of the bitter experience of Japan in the Second World War and its exhaustion, it was able to build a modern modern state after 1945. Japan is a country of culture, civilization, science and technology, a country that appreciates the value of solidarity work. And the role of active civil society. This is what makes us in Iraq stand and draw their experience in the advancement and development, especially that they also passed bitter political stages, Iraq today passes through the most historical periods of forestry through its historical heritage in terms of the existence of complex social problems, the US occupation of Iraq in 2003 highlighte
... Show MoreThe δ-mixing ratios have been calculated for several γ-transitions in 90Mo using the 𝛔 𝐉 method. The results are compared with other references the agreement is found to be very good .this confirms the validity of the 𝛔 𝐉 method as a tool for analyzing the angular distribution of γ-ray. Key word: population parameter, γ-ray transition, 𝛔 𝐉 method, multiple mixing ratios.
In this paper, a new technique is offered for solving three types of linear integral equations of the 2nd kind including Volterra-Fredholm integral equations (LVFIE) (as a general case), Volterra integral equations (LVIE) and Fredholm integral equations (LFIE) (as special cases). The new technique depends on approximating the solution to a polynomial of degree and therefore reducing the problem to a linear programming problem(LPP), which will be solved to find the approximate solution of LVFIE. Moreover, quadrature methods including trapezoidal rule (TR), Simpson 1/3 rule (SR), Boole rule (BR), and Romberg integration formula (RI) are used to approximate the integrals that exist in LVFIE. Also, a comparison between those methods i
... Show MoreIn this paper, a new technique is offered for solving three types of linear integral equations of the 2nd kind including Volterra-Fredholm integral equations (LVFIE) (as a general case), Volterra integral equations (LVIE) and Fredholm integral equations (LFIE) (as special cases). The new technique depends on approximating the solution to a polynomial of degree and therefore reducing the problem to a linear programming problem(LPP), which will be solved to find the approximate solution of LVFIE. Moreover, quadrature methods including trapezoidal rule (TR), Simpson 1/3 rule (SR), Boole rule (BR), and Romberg integration formula (RI) are used to approximate the integrals that exist in LVFIE. Also, a comparison between those
... Show MoreElectrical Discharge Machining (EDM) is a widespread Nontraditional Machining (NTM) processes for manufacturing of a complicated geometry or very hard metals parts that are difficult to machine by traditional machining operations. Electrical discharge machining is a material removal (MR) process characterized by using electrical discharge erosion. This paper discusses the optimal parameters of EDM on high-speed steel (HSS) AISI M2 as a workpiece using copper and brass as an electrode. The input parameters used for experimental work are current (10, 24 and 42 A), pulse on time (100, 150 and 200 µs), and pulse off time (4, 12 and 25 µs) that have effect on the material removal rate (MRR), electrode wear rate (EWR) and wear ratio (WR). A
... Show More