Solar cells has been assembly with electrolytes including I−/I−3 redox duality employ polyacrylonitrile (PAN), ethylene carbonate (EC), propylene carbonate (PC), with double iodide salts of tetrabutylammonium iodide (TBAI) and Lithium iodide (LiI) and iodine (I2) were thoughtful for enhancing the efficiency of the solar cells. The rendering of the solar cells has been examining by alteration the weight ratio of the salts in the electrolyte. The solar cell with electrolyte comprises (60% wt. TBAI/40% wt. LiI (+I2)) display elevated efficiency of 5.189% under 1000 W/m2 light intensity. While the solar cell with electrolyte comprises (60% wt. LiI/40% wt. TBAI (+I2)) display a lower efficiency of 3.189%. The conductivity raises with the raising TBAI salt weight ratio and attains the maximum value of 1.7×10−3 S. cm−1 at room temperature with 60% wt. TBAI, and the lower value of ionic conductivity of 5.27×10−4 S. cm−1 for electrolyte with 40% wt. TBAI. The results display that the conductivity rises with rising temperature. This may be attributed to the extending of the polymer and thereby output the free volume. The alteration in ionic conductivity with temperature obeys the Arrhenius type thermally activated process. The differences in activation energy mightily backup the alteration in the electrical conductivity.
Objective: Per-implantitis is one of the implant treatment complications. Dentists have failed to restore damaged periodontium by using conventional therapies. Tissue engineering (stem cells, scaffold and growth factors) aims to reconstruct natural tissues. The paper aimed to isolate both periodontal ligament stem cells (PDLSCs) and bone marrow mesenchymal stem cells (BMMSCs) and use them in a co-culture method to create three-layered cell sheets for reconstructing natural periodontal ligament (PDL) tissue. Materials and methods: BMMSCs were isolated from rabbit tibia and femur, and PDLSC culture was established from the lower right incisor. The cells were co-cultured to induce BMMSC differentiation into PDL cells. Cell morphology, stem cel
... Show MoreSimple, sensitive and accurate two methods were described for the determination of terazosin. The spectrophotometric method (A) is based on measuring the spectral absorption of the ion-pair complex formed between terazosin with eosin Y in the acetate buffer medium pH 3 at 545 nm. Method (B) is based on the quantitative quenching effect of terazosin on the native fluorescence of Eosin Y at the pH 3. The quenching of the fluorescence of Eosin Y was measured at 556 nm after excitation at 345 nm. The two methods obeyed Beer’s law over the concentration ranges of 0.1-8 and 0.05-7 µg/mL for method A and B respectively. Both methods succeeded in the determination of terazosin in its tablets
New azo ligand 2-((4-formyl-3-hydroxynaphthalen-2-yl) diazenyl) benzoic acid (H2L) was synthesized from the reaction of 2-aminobenzoic acid and2-hydroxy-1-naphthaldehyde. Monomeric complexes of this ligand, of general formulae [MII(L)(H2O)] with (MII = Mn, Co, Ni, Cu, Zn, Pd, Cd and Hg ) were reported. The compounds were isolated and characterized in solid state by using 1H-NMR, FT-IR, UV–Vis and mass spectral studies, elemental microanalysis, metal content, magnetic moment measurements, molar conductance and chloride containing. These studies revealed tetrahedral geometries for all complexes except PdII complex is Square planar. The study of complexes formation via molar ratio of (M:L) as (1:1). Theoretical treatments of compounds in gas
... Show MoreSpectrophotometric method was developed for the determination of copper(II) ion. Synthesized (2,2[O-Tolidine-4,4-bis azo]bis[4,5-diphenyl imidazole]) (MBBAI) was used as chromogenic reagent at pH=5. Various factors affecting complex formation, such as, pH effect, reagent concentration, time effect and temperature effect, have been considered and studied. Under optimum conditions concentration ranged from (5.00-80.00) µg/mL of copper(II) obeyed Beer`s Low. Maximum absorption of the complex was 409nm with molar absorpitivity 0.127x104 L mol-1 cm-1. Limit of detection(LOD) and Limit of quantification were 1.924 and 6.42 μg/mL, respectively.
... Show MoreThe influence of adding metal foam fins on the heat transfer characteristics of an air to water double pipe heat exchanger is numerically investigated. The hot fluid is water which flows in the inner cylinder whereas the cold fluid is air which circulates in the annular gap in parallel flow with water. Ten fins of metal foam (Porosity = 0.93), are added in the gap between the two cylinder, and distributed periodically with the axial distance. Finite volume method is used to solve the governing equations in porous and non-porous regions. The numerical investigations cover three values for Reynolds number (1000 ,1500, 2000), and Darcy number (1 x10-1, 1 x10-2, 1x10-3). The comparison betwee
... Show MoreAbstract
This work deals with a numerical investigation to evaluate the utilization of a water pipe buried inside a roof to reduce the heat gain and minimize the transmission of heat energy inside the conditioning space in summer season. The numerical results of this paper showed that the reduction in heat gain and energy saving could be occurred with specific values of parameters, like the number of pipes per square meter, the ratio of pipe diameter to the roof thickness, and the pipe inlet water temperature. Comparing with a normal roof (without pipes), the results indicated a significant reduction in energy heat gain which is about 37.8% when the number of pipes per m
... Show MoreIn this paper, CdS/Si hetrojunction solar cell has been made by
Chemical Bath Deposition (CBD) of CdS thin film on to
monocrystalline silicon substrate. XRD measurements approved that
CdS film is changing the structure of CdS films from mixed
hexagonal and cubic phase to the hexagonal phase with [101]
predominant orientation. I-V characterization of the hetrojunction
shows good rectification, with high spectral responsivity of 0.41
A/W, quantum efficiency 90%,and specific detectivity 2.9*1014
cmHz1/2W -1 .
Solar module operating temperature is the second major factor affects the performance of solar photovoltaic panels after the amount of solar radiation. This paper presents a performance comparison of mono-crystalline Silicon (mc-Si), poly-crystalline Silicon (pc-Si), amorphous Silicon (a-Si) and Cupper Indium Gallium di-selenide (CIGS) photovoltaic technologies under Climate Conditions of Baghdad city. Temperature influence on the solar modules electric output parameters was investigated experimentally and their temperature coefficients was calculated. These temperature coefficients are important for all systems design and sizing. The experimental results revealed that the pc-Si module showed a decrease in open circuit v
... Show MoreIn the present work advanced oxidation process, photo-Fenton (UV/H2O2/Fe+2) system, for the treatment of wastewater contaminated with oil was investigated. The reaction was influenced by the input concentration of hydrogen peroxide H2O2, the initial amount of the iron catalyst Fe+2, pH, temperature and the concentration of oil in the wastewater. The removal efficiency for the system UV/ H2O2/Fe+2 at the optimal conditions and dosage (H2O2 = 400mg/L, Fe+2 = 40mg/L, pH=3, temperature =30o C) for 1000mg/L load was found to be 72%.
In this work, an inventive photovoltaic evaporative cooling (PV/EC) hybrid system was constructed and experimentally investigated. The PV/EC hybrid system has the prosperous advantage of producing electrical energy and cooling the PV panel besides providing cooled-humid air. Two cooling techniques were utilized: backside evaporative cooling (case #1) and combined backside evaporative cooling with a front-side water spray technique (case #2). The water spraying on the front side of the PV panel is intermittent to minimize water and power consumption depending on the PV panel temperature. In addition, two pad thicknesses of 5 cm and 10 cm were investigated at three different water flow rates of 1, 2, and 3 lpm. In Case #1,
... Show More