In this work, The effect of annealing treatment at different temperatures (373, 423 and 473) K and chemical treatment with talwen at different immersion time (40, 60 and 80) min on structural and optical properties of the bulk heterojunction (BHJ) blend copper phthalocyanine tetrasulfonic acid tetrasodium salt/poly dioxyethylenethienylene doped with polystyrenesulphonic acid (CuPcTs/PEDOT:PSS) thin films were investigated. The films were fabricated using spin coating technique. X-ray diffraction (XRD) measurements displayed only one peak at 2θ =4.5o corresponding to (001) direction which has dhkl larger than for standard CuPcTs. The dhkl increase then decrease with increasing annealing temperature and
the time of chemical treatment with talwen. FTIR measurements show that, the peaks for O-H, in general, decrease with increasing annealing temperature, while the peaks corresponding to C=C aromatic bond and C-N bond decrease at 373 K then increase at 423 and 473 K. The peaks for O-H, in general, decrease with increasing immersing time, while the peaks corresponding to C=C aromatic bond and C-N bond decrease at 40 min then increase at more immersing time. From UV-visible measurements, the absorption spectra peaks for B and Q-bands increase at 373K and at 40 min immersing time with talwen and decrease at more annealing or chemical treated time.
In this work; copper oxide films (CuO) were fabricated by PLD. The films were analyzed by UV-VIS absorption spectra and their thickness by using profilometer. Pulsed Nd:YAG laser was used for prepared CuO thin films under O2 gas environment with varying both pulse energy and annealing temperature. The optical properties of as-grown film such as optical transmittance spectrum, refractive index and energy gap has been measured experimentally and the effects of laser pulse energy and annealing temperature on it were studied. An inverse relationship between energy gap and both annealing temperature and pulse energy was observed.
Effect of [Cu/In] ratio on the optical properties of CuInS2 thin films prepared by chemical spray pyrolysis on glass slides at 300oC was studied. The optical characteristics of the prepared thin films have been investigated using UV-VIS spectrophotometer in the wavelength range (300-1100 nm). The films have a direct allow electronic transition with optical energy gap (Eg) decreased from 1.51 eV to 1.30 eV with increasing of [Cu/In] ratio and as well as we notice that films have different behavior when annealed the films in the temperature 100oC (1h,2h), 200oC (1h,2h) for [Cu/In]=1.4 . Also the extinction coefficient (k), refractive index (n) and the real and imaginary dielectric constants (ε1, ε2) have been investigated
In this research ,Undoped Nio and 1%Li doped Nio thin films were deposited utilizing chemical spray pyrolysis on the glass substrates heated (450C). The effects of non-thermal plasma on the structural and optical properties were studied. XRD measurement shows that Nio and Nio:1%Li films were found to be polycrystalline and have cubic structure with a preferred orientation (111). Decreased crystal size after exposure especially at (7) sec. AFM data indicate that the surface roughness average and (RMS) values of the prepared doped films are increasing after exposure to plasma, the transmittance increases after doped samples exposure to plasma, it was found that the energy gap value decreased when doped samples exposure to plasma, also, thickn
... Show MoreCopper tin sulfide (Cu2SnS3) thin films have been grown on glass
substrate with different thicknesses (500, 750 and 1000) nm by flash
thermal evaporation method after prepare its alloy from their
elements with high purity. The as-deposited films were annealed at
473 K for 1h. Compositional analysis was done using Energy
dispersive spectroscopy (EDS). The microstructure of CTS powder
examined by SEM and found that the large crystal grains are shown
clearly in images. XRD investigation revealed that the alloy was
polycrystalline nature and has cubic structure with preferred
orientation along (111) plane, while as deposited films of different
thickness have amorphous structure and converted to polycrystalline
The present paper deals with prepared of ternary Se80-xTe20Gex system alloys and thin films. The XRD analysis improved that the amorphous structure of alloys and thin films for ternary Se80-xTe20Gex (at x=10and 20at.%Ge) which prepared by thermal evaporation techniques with thickness 250 nm. The optical energy gap measurements show that the optical energy gap decreases with increasing of (Ge) content from (1.7 to 1.47 eV)
It is found that the optical constants, such as refractive
index ,extinction coefficient, real and imaginary dielectric
constant are non systematic with increasing of Ge contents
and annealing temperatures
Cadmium Oxide and Bi doped Cadmium Oxide thin films are prepared by using the chemical spray pyrolysis technique a glass substrate at a temperature of (400?C) with volumetric concentration (2,4)%. The thickness of all prepared films is about (400±20) nm. Transmittance and Absorbance spectra are recorded in the wave length ranged (400-800) nm. The nature of electronic transitions is determined, it is found out that these films have directly allowed transition with an optical energy gap of (2.37( eV for CdO and ) 2.59, 2.62) eV for (2% ,4%) Bi doped CdO respectively. The optical constants have been evaluated before and after doping.
Indium doped CdTe polycrystalline films of thickness equals to 300nm were grown on corning glass substrates at temperature equals to 423K by thermal co-evaporation technique. The structural and electrical properties for these films were studied as a function of heat treatment (323,373,423)K. The x-ray analysis showed that all samples are polycrystalline and have the cubic zincblende structure with preferential orientation in the [111] direction, no diffraction peaks corresponding to metallic Cd, Te or other compounds were observed. It was found that the electrical resistivity drops and the carrier concentration increases when the CdTe film doped with 1.5% indium and treated at different annealing temperatures.
The influence of silver doped n-type polycrystalline CdTe film with thickness of 200 nm and rate deposition of 0.3 nm.s -1 prepared under high vacuum using thermal co-evaporation technique on its some structural and electrical properties was reported. The X- ray analysis showed that all samples are polycrystalline and have the cubic zinc blend structure with preferential orientation in the [111] direction. Films doping with impurity percentages (2, 3, and 4) %Ag lead to a significant increase in the carrier concentration, so it is found to change from 23.493 108 cm -3 to 59.297 108 cm -3 for pure and doped CdTe thin films with 4%Ag respectively. But films doping with impurity percentages above lead to a significant decrease in the electrica
... Show MoreA polycrystalline CdTe film has been prepared by thermal evaporation technique on glass substrate at substrate temperature 423 K with 1.0 m thicknesses. The film was heated at various annealing temperature under vacuum (Ta =473, 523 and K). Some of physical properties of prepared films such as structural and optical properties were investigated. The patterns of X-ray diffraction analysis showed that the structure of CdTe powder and all films were polycrystalline and consist of a mixture of cubic and hexagonal phases and preferred orientation at (111) direction.
The optical measurements showed that un annealed and annealed CdTe films had direct energy gap (Eg). The Eg increased with increasing Ta. The refractive index and the real p