PVA:PEG/MnCl2 composites have been prepared by adding (MnCl2) to the mixture of the poly vinyl alcohol (PVA) and poly ethylene glycol (PEG) with different weight percentages (0, 2, 4, 6, 8 and 10) wt.% by using casting method. The type of charge carriers, concentration (nH) and Hall mobility (μH) have been estimated from Hall measurements and show that the films of all concentration have a negative Hall coefficient. In D.C measurement increase temperature leads to decrease the electrical resistance. The D.C conductivity of the composites increases with the increasing of the concentration of additive particles and temperature. The activation energy decreases for all composites with increasing the concentration of the additive particles. The A.C conductivity increases with increasing of the frequency and the concentration of MnCl2 particles. The A.C electrical properties show that the dielectric constant and dielectric loss of the composites decrease with increasing of the frequency.
Mercury-lead-antimony based superconductors with the formula Hg0.5 Pb0.5xSbxBa2Ca2Cu3O8+δ (x=0, 0.10 and 0.15) have been prepared by useing three step solid state reaction processes. Electrical resistivity, using four probe technique, is used to find the transition temperature Tc. It is found from that sample Hg0.5 Pb0.5Ba2Ca2Cu3O8.437 is semiconductor , sample Hg0.5 Pb0.4Sb0.1Ba2Ca2Cu3O8.353 is normal state with metallic behaviors, while sample Hg0.5 Pb0.35Sb0.15Ba2Ca2Cu3O8.233 is superconducting state with critical transition temperature (Tc) is 126K. X-ray diffraction (XRD) analysis showed a tetragonal structure with decrease in the c-axis lattice constant for the samples doped with Sb as compared with these which have no Sb
... Show MoreIn the present work, nanocomposite of poly (vinyl alcohol) (PVA) incorporated with functionalized graphene oxide (FGO) were fabricated using casting method. PVA was dispersed by varying content of FGO (0.3, 0.5, 0.8, 1 wt %). The PVA- FGO nanocomposite was characterized by FT‐IR, FE-SEM and XRD. Frequency dependence of real permittivity (ε’), imaginary (ε’’) and a.c conductivity of PVA/FGO and PVA/GO nanocomposite were studied in the frequency range 100 Hz- 1 MHz. The experimental results showed that the values of real (ε’) and imaginary permittivity (ε’’) increased dramatically by increasing the FGO content in PVA matrix. PVA/ FGO (1 wt %) nanocomposite revealed higher electrical conductivity of 6.4×10-4 Sm-1 compared to
... Show MoreNatural fibers and particles reinforced composites are being broadly used due to their bio and specific properties such as low density and easy to machine and production with low cost. In this work, water absorption and mechanical properties such as tensile strength, flexural strength and impact strength of recycled jute fibers reinforced epoxy resin were enhanced by treating these fibers with alkaline solution. The recycled jute fibers were treated with different concentration of (NaOH) solution at (25 0C) for a period of (24) hours. From the obtained results, it was found that all these properties are improved when fibers treated with (7.5wt% NaOH) related to untreated fibers. Conversely, the mentioned properties of composit
... Show MoreThe paper reports the influence of annealing temperature under vacuum for one hour on the some structural and electrical properties of p-type CdTe thin films were grown at room temperature under high vacuum by using thermal evaporation technique with a mean thickness about 600nm. X-ray diffraction analysis confirms the formation of CdTe cubic phase at all annealing temperature. From investigated the electrical properties of CdTe thin films, the electrical conductivity, the majority carrier concentration, and the Hall mobility were found increase with increasing annealing temperatures.
The paper reports the influence of annealing temperature under vacuum for one hour on the some structural and electrical properties of p-type CdTe thin films were grown at room temperature under high vacuum by using thermal evaporation technique with a mean thickness about 600nm. X-ray diffraction analysis confirms the formation of CdTe cubic phase at all annealing temperature. From investigated the electrical properties of CdTe thin films, the electrical conductivity, the majority carrier concentration, and the Hall mobility were found increase with increasing annealing temperatures.
Zinc Oxide (ZnO) is probably the most typical II-VI
semiconductor, which exhibits a wide range of nanostructures. In
this paper, polycrystalline ZnO thin films were prepared by chemical
spray pyrolysis technique, the films were deposited onto glass
substrate at 400 °C by using aqueous zinc chloride as a spray
solution of molar concentration of 0.1 M/L.
The crystallographic structure of the prepared film was analyzed
using X-ray diffraction; the result shows that the film was
polycrystalline, the grain size which was calculated at (002) was
27.9 nm. The Hall measurement of the film studied from the
electrical measurements show that the film was n-type. The optical
properties of the film were studied using
Thin films of ZnO nano crystalline doped with different concentrations (0, 6, 9, 12, and 18 )wt. % of copper were deposited on a glass substrate via pulsed laser deposition method (PLD). The properties of ZnO: Cu thin-nanofilms have been studied by absorbing UV-VIS, X-ray diffraction (XRD) and atomic force microscopes (AFM). UV-VIS spectroscopy was used to determine the type and value of the optical energy gap, while X-ray diffraction was used to examine the structure and determine the size of the crystals. Atomic force microscopes were used to study the surface formation of precipitated materials. The UV-VIS spectroscopy was used to determine the type and value of the optical energy gap.
Sb-dopedAgInSe2 (AIS: 3%Sb)thin films were synthesized by thermal evaporation with a vacuum of 7*10-6torr on glass with (400+20) nm thickness. X-ray diffraction was used to show that Sb atoms were successfully incorporated into the AgInSe2 lattice. Then the thin films are annealed in air at 573 K. XRD shows that thin films AIS pure, AIS: 3%Sb and annealing at 573 K are polycrystalline with tetragonal structure with preferential orientation (112).raise the crystallinity degree. The Absorption spectra revealed that the average Absorption was more than 60% at the wavelength range of 400–700 nm. UV/Visible measure shows the lowering in energy gap to 1.4 eV forAIS: 3%Sb at 573 Kt his energy gap making these samples suitable for p
... Show More