An effective two-body density operator for point nucleon system folded with two-body correlation functions, which take account of the effect of the strong short range repulsion and the strong tensor force in the nucleon-nucleon forces, is produced and used to derive an explicit form for ground state two-body charge density distributions (2BCDD's) and elastic electron scattering form factors F (q) for 19F, 27Al and 25Mg nuclei. It is found that the inclusion of the two-body short range correlations (SRC) has the feature of reducing the central part of the 2BCDD's significantly and increasing the tail part of them slightly, i.e. it tends to increase the probability of transferring the protons from the central region of the nucleus towards its surface and to increase the root mean square charge radius ˂ r 2˃ 1/2 of the nucleus and then makes the nucleus to be less rigid than the case when there is no (SRC). It is also found that the effects of two body tensor correlations (TCs) on 2BCDD's and ˂ r 2˃ 1/2 are in opposite direction to those of (SRC).
A spherical-statistical optical model (SOM) has been used to calculate and evaluate the neutron interaction with medium nuclei (40 ). Empirical formulae of the optical potentials parameters are predicted with minimize accuracy compared with experimental bench work data. With these optical formulae an evaluation of the shape and compound elastic scattering cross-section of interaction neutrons with 56Fe nuclei at different energy range (1-20) MeV has been calculated and compared with experimental results. Also, volume integrals for real and imaginary potential energies have been evaluated and matched with the standard ABAREX code. Good agreements with have been achieved with the available experimental data.
The ground state charge, proton and matter densities and their rms radii of some Te-isotopes are studied by means of the Skyrme–Hartree–Fock (SHF) method with the Skyrme parameters namely; SKB, SGI, SKM, SKX, MSK7 and SLy4. Also, the neutron skin thickness, the elastic charge form factor and the binding energy per nucleon are calculated in the same framework. The calculated results have been compared with the available experimental data.
PACS Nos.: 21.10.Ft, 25.30.Bf
The longitudinal electron scattering form factors and the electric quadrupole moments are calculated for the states with Jπ T= 3+0 (ground state) and 1+ 0 (583keV excited state) of 22Na and Jπ T= 3+2 (ground state) of 26Na. Shell model calculations are based on USDA, USDB and Wildenthal interactions. The exact center of mass correction is included in Born approximation picture to generate the longitudinal form factors. The core polarization (CP) effect with the values of effective nucleon charges ep=1.35, en= 0.35, with Bohr Mottelson formula gave a good agreement with the measured electric quadrupole moments. The structure of th
... Show MoreIn the present work, the nuclear shell model with Hartree–Fock (HF) calculations have been used to investigate the nuclear structure of 24Mg nucleus. Particularly, elastic and inelastic electron scattering form factors and transition probabilities have been calculated for low-lying positive and negative states. The sd and sdpf shell model spaces have been used to calculate the one-body density matrix elements (OBDM) for positive and negative parity states respectively. Skyrme-Hartree-Fock (SHF) with different parameterizations has been tested with shell model calculation as a single particle potential for reproducing the experimental data along with a harmonic oscillator (HO) and Woods-Saxo
... Show MoreComputer theoretical study has been carried out on the design of five electrode immersion electrostatic lens used in electron gun application. The finite element method (FEM) is used in the solution of the Poisson's equation fro determine axial potential distribution, the electron trajectory under Zero magnification condition . The optical properties : focal length ,spherical and chromatic aberrations are calculated,From studying the properties of the designed electron gun. we have good futures for these electron gun where are abeam current 4*10-4A can be supplied by using cathode tip of radius 100 nm.
The possible effect of the collective motion in heavy nuclei has been investigated in the framework of Nilson model. This effect has been searched realistically by calculating the level density, which plays a significant role in the description of the reaction cross sections in the statistical nuclear theory. The nuclear level density parameter for some deformed radioisotopes of (even- even) target nuclei (Dy, W and Os) is calculated, by taking into consideration the collective motion for excitation modes for the observed nuclear spectra near the neutron binding energy. The method employed in the present work assumes equidistant spacing of the collective coupled state bands of the considered isotopes. The present calculated results for f
... Show MoreThe com pton profiles for Ti02 have been measured using a SCi
Am-241 compton spectrometer .A pellet of the oxide was prepared from a polycrystalline powder having a thickness of 1.54 mm ,about J 00000 counts have been accumulated at the compton peak
.Theoreti cal compton profiles have been calculated for different ionic anangements using free atom compton profile for the core electrons.The theoretical and experimental results ahrce well for (Ti/4(0 .2 arrangement which support complete transfer of valence electrons from metal to oxygen ions, i.e., full ionic &nbs
... Show MoreThe radial wave functions of the Bear–Hodgson potential have been used to study the ground state features such as the proton, neutron and matter densities and the as- sociated rms radii of two neutrons halo 6He, 11Li, 14Be and 17B nuclei. These halo nuclei are treated as a three-body system composed of core and outer two-neutron (Core + n + n). The radial wave functions of the Bear–Hodgson potential are used to describe the core and halo density distributions. The interaction of core-neutron takes the Bear–Hodgson potential form. The outer two neutrons of 6He and 11Li interact by the realistic interaction REWIL whereas those of 14Be and 17B interact by the realistic interaction of HASP. The obtained results show that this model succee
... Show MoreNuclear structure of 29-34Mg isotopes toward neutron dripline have been investigated using shell model with Skyrme-Hartree–Fock calculations. In particular nuclear densities for proton, neutron, mass and charge densities with their corresponding rms radii, neutron skin thicknesses and inelastic electron scattering form factors are calculated for positive low-lying states. The deduced results are discussed for the transverse form factor and compared with the available experimental data. It has been confirmed that the combining shell model with Hartree-Fock mean field method with Skyrme interaction can accommodate very well the nuclear excitation properties and can reach a highly descriptive and predictive power when investiga
... Show MoreThe aim of this work is to calculate the one- electron expectation value of the electronic charge of atomic system Z=2,3….7 and we compare with He atom . the electronic density function D(r1) of He atom and like ions are evaluated . using Hartree –Fock wave.