Digital change detection is the process that helps in determining the changes associated with land use and land cover properties with reference to geo-registered multi temporal remote sensing data. In this research change detection techniques have been employed to detect the changes in marshes in south of Iraq for two period the first one from 1973 to 1984 and the other from 1973 to 2014 three satellite images had been captured by land sat in different period. Preprocessing such as geo-registered, rectification and mosaic process have been done to prepare the satellite images for monitoring process. supervised classification techniques such maximum likelihood classification has been used to classify the studied area, change detection after classification have been implemented between the new classes of adopted images, and finally change detection using matched filter was applied on the region of interest for each class.
The major function of the kidney is the filtration and secretion of the final products of metabolism and the excess of electrolytes. The term kidney failure denotes inability of the kidneys to perform excretory function leading to retention of nitrogenous waste products from the blood. Biosensor are most accurate, with a rapid diagnosis ,more costly method than the traditional method to avoid any biological changes in blood sample that lead to changes optical characteristic (refractive index and absorption) of blood sample. The current study was designed to single mode more Sensitivity than multi mode for Biomarkers were recorded for Albumin 5447.06, 5193.93 and Urea sample 2623.14, 1998.44 in sm and mm respectively .
... Show MoreFor several applications, it is very important to have an edge detection technique matching human visual contour perception and less sensitive to noise. The edge detection algorithm describes in this paper based on the results obtained by Maximum a posteriori (MAP) and Maximum Entropy (ME) deblurring algorithms. The technique makes a trade-off between sharpening and smoothing the noisy image. One of the advantages of the described algorithm is less sensitive to noise than that given by Marr and Geuen techniques that considered to be the best edge detection algorithms in terms of matching human visual contour perception.
The shortage in surface water quantities led to a shift in dependence on the groundwater as an alternative water source in southern parts of Iraq. The groundwater is decreasing in quantity and water quality is degrading due to different factors. Therefore, it is important to assess the groundwater quality of the Missan Governorate of the country by analyzing the physicochemical parameters and distinguishing the probable sources of contaminants in the area. The present study used water quality diagrams and statistical methods such as factor analysis and agglomerative cluster analysis to determine the sources of chemical ions in the forty-four groundwater samples collected from wells in the study area. In addition, the Water Quality Index (WQ
... Show MoreThe objective that the researcher seeks to achieve through this research is to clarify the relationship between strategic management accounting techniques and the reliability of financial statements, and to measure the impact of these techniques as an independent variable with its three dimensions, which are: activities-based cost, target cost, and benchmarking on the reliability of financial statements as a dependent variable. To achieve this objective, the researcher did the following: First: Determine the research problem through the following question: Do strategic management accounting techniques affect the reliability of financial statements in industrial companies listed on the Palestine Exchange? Second: Making the analytical des
... Show MoreCybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a
... Show MoreIn recent years, non-oil primary balance indicator has been given considerable financial important in rentier state. It highly depends on this indicator to afford a clear and proper picture of public finance situation in term of appropriate and sustainability in these countries, due to it excludes the effect of oil- rental from compound of financial accounts which provide sufficient information to economic policy makers of how economy is able to create potential added value and then changes by eliminating one sided shades of economy. In Iraq, since, 2004, the deficit in value of this indicator has increased, due to almost complete dependence on the revenues of the oil to finance the budget and the obvious decline of the non-oil s
... Show MoreThe study aims to identify the educational research obstacles as perceived by the faculty members at the universities of south in the west bank. As for study population, it included all (60) faculty-member in the colleges of education (bait lahem, alahliyah, al-khalil, and al-Quds almaftoha). To collect study data, the researcher used a questionnaire that consisted of (43) item; it has categorized into seven-domains: academic working conditions, academic management, resources and information, faculty members, publication, planning, and funding educational research. The findings revealed that Educational research obstacles were high with an average of (4, 39), no significant differences among sample averages and stander deviations on the
... Show MoreRegarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show More