Digital change detection is the process that helps in determining the changes associated with land use and land cover properties with reference to geo-registered multi temporal remote sensing data. In this research change detection techniques have been employed to detect the changes in marshes in south of Iraq for two period the first one from 1973 to 1984 and the other from 1973 to 2014 three satellite images had been captured by land sat in different period. Preprocessing such as geo-registered, rectification and mosaic process have been done to prepare the satellite images for monitoring process. supervised classification techniques such maximum likelihood classification has been used to classify the studied area, change detection after classification have been implemented between the new classes of adopted images, and finally change detection using matched filter was applied on the region of interest for each class.
This study focuses on evaluating the suitability of three interpolation methods in terms of their accuracy at climate data for some provinces of south of Iraq. Two data sets of maximum and minimum temperature in February 2008 from nine meteorological stations located in the south of Iraq using three interpolation methods. ArcGIS is used to produce the spatially distributed temperature data by using IDW, ordinary kriging, and spline. Four statistical methods are applied to analyze the results obtained from three interpolation methods. These methods are RMSE, RMSE as a percentage of the mean, Model efficiency (E) and Bias, which showed that the ordinary krigingis the best for this data from other methods by the results that have b
... Show MoreThis study reported the investigation of the Radio Frequency (RF) signal propagation of Global System for Mobile Communications (GSM) coverage in Emmanuel Alayande College of Education (EACOED), Oyo, Oyo State, Nigeria. The study aims at amplifying the quality of service and augment end users' sensitivity of the wireless services operation. The drive test method is adopted with estimation of coverage level and received signal strength. The Network Cell Info Lite application installed in three INFINIX GSM mobile phones was employed to take the measurement of the signal strength received from the transmitting stations of different mobile networks. The results of the study revealed that MTN has the maximum signal strength with a mean value
... Show MoreSixteen polycyclic aromatic hydrocarbons (PAHs) concentrations were measured in aerosol samples collected for the period from April 2012 to February 2013 at thermal south power station of Baghdad. Fourty one aerosol sample were extracted with (1:1) dichloromethane and methanol using soxhlet for seventeen hour. The extraction solution was analyzed applying GC/MS. The PAH concentrations outside thermal south power station were higher than those inside it, and higher in summer season than in winter. Naphthalene, pyrene, Anthracene, Indeno [1, 2, 3-cd] pyrene and Phenanthrene were the most abundant PAHs detected in all points at the site sampling. The total polycyclic aromatic hydrocarbon (TPAH) and total suspended particles (TSP) concentrat
... Show MoreHumans use deception daily since it can significantly affect their life and provide a getaway solution for any undesired situation. Deception is either related to low-stakes (e.g. innocuous) or high-stakes (e.g. with harmful situations). Deception investigation importance has increased, and it became a critical issue over the years with the increase of security levels around the globe. Technology has made remarkable achievements in many human life fields, including deception detection. Automated deception detection systems (DDSs) are widely used in different fields, especially for security purposes. The DDS is comprised of multiple stages, each of which should be built/trained to perform intelligently so that the whole system can give th
... Show MoreCassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has
... Show More