Preferred Language
Articles
/
ijp-13
Influence of substrates on the properties of cerium -doped CdO nanocrystalline thin films
...Show More Authors

Transparent thin films of CdO:Ce has been deposited on to glass and silicon substrates by spray pyrolysis technique for various concentrations of cerium (2, 4, and 6 Vol.%). CdO:Ce films were characterized using different techniques such as X-ray diffraction (XRD), atomic force microscopy(AFM) and optical properties. XRD analysis show that CdO films exhibit cubic crystal structure with (1 1 1) preferred orientation and the intensity of the peak increases with increasing's of Ce contain when deposited films on glass substrate, while for silicon substrate, the intensity of peaks decreases, the results reveal that the grain size of the prepared thin film is approximately (73.75-109.88) nm various with increased of cerium content. With a surface roughness of (0.871–16.2) nm as well as root mean square of (1.06-19.7) nm for glass substrate, while for silicon (84.79-107.48) nm, for a pure CdO and doped with Ce (2, 4, and 6 Vol.%). The 300-nm-thin CdO films showed that the optical energy band gap equal 2.6 eV, and increases with increasing doping until reaches a maximum value of 3.25 eV when doping levels 6 Vol.%.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Preparation and characterization of mixed SnO2:CdO thin films as gas sensor
...Show More Authors

In this study, tin oxide (SnO2) and mixed with cadmium oxide (CdO) with concentration ratio of (5, 10, 15, 20)% films were deposited by spray pyrolysis technique onto glass substrates at 300ºC temperature. The structure of the SnO2:CdO mixed films have polycrystalline structure with (110) and (101) preferential orientations. Atomic force microscopy (AFM) show the films are displayed granular structure. It was found that the grain size increases with increasing of mixed concentration ratio. The transmittance in visible and NIR region was estimated for SnO2:CdO mixed films. Direct optical band gap was estimated for SnO2 and SnO2 mixed CdO and show a decrease in the energy gap with increasing mixing ratio. From Hall measurement, it was fou

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Sep 09 2022
Journal Name
Journal Of Ovonic Research
The effects of CuO doping on structural, electrical and optical properties of CdO thin films deposited by pulsed laser deposition technique
...Show More Authors

Thin films of (CdO)x (CuO)1-x (where x = 0.0, 0.2, 0.3, 0.4 and 0.5) were prepared by the pulsed laser deposition. The CuO addition caused an increase in diffraction peaks intensity at (111) and a decrease in diffraction peaks intensity at (200). As CuO content increases, the band gap increases to a maximum of 3.51 eV, maximum resistivity of 8.251x 104 Ω.cm with mobility of 199.5 cm2 / V.s, when x= 0.5. The results show that the conductivity is ntype when x value was changed in the range (0 to 0.4) but further addition of CuO converted the samples to p-type.

View Publication
Scopus (4)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Mon Apr 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Annealing Influence on Nanostructure's Optical Properties CdS Thin Films Prepared by Physical Vapor Deposition Technique
...Show More Authors

    In this work, the influence of the annealing temperature on the optical properties of the thin films Cadmium Sulphide (CdS) has been studied. Thin films of Cadmium Sulphide (CdS) were made using the Physical Vapor Deposition (PVD) method. The optical properties of annealing temperatures (as deposited, 200, 250, and 300  ) were scrupulous. The UV/VIS spectrophotometer investigated optical parameters such as transmission, the coefficient of absorption and energy gap of the films for the range (400-110 nm) as an assignment of the annealing temperature. The optical properties were calculated as a function of annealed temperature: absorption, transmission, reflection, band gap, coefficient of absorp

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
Structural and Optical Properties of Cobalt-Doped Zinc Oxide Thin Films Prepared By Spray Pyrolysis Technique
...Show More Authors

Undoped and Co-doped zinc oxide (CZO) thin films have been prepared by spray pyrolysis technique using solution of zinc acetate and cobalt chloride. The effect of Co dopants on structural and optical properties has been investigated. The films were found to exhibit maximum transmittance (~90%) and low absorbance. The structural properties of the deposited films were examined by x-ray diffraction (XRD). These films, deposited on glass substrates at (400? C), have a polycrystalline texture with a wurtzite hexagonal structure, and the grain size was decreased with increasing Co concentration, and no change was observed in lattice constants while the optical band gap decreased from (3.18-3.02) eV for direct allowed transition. Other parameters

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Study Influence of Substrate Temperature on Optical Properties of CdS Thin Films Prepared by Chemical Spray pyrolysis
...Show More Authors

This study aims to prepare Cadmium Sulphide (CdS) thin films using thermal Chemical Spray Pyrolysis (CSP) on glass of different temperatures substrate from cadmium nitrate solution. Constant thickness was (430 ± 20 nm) and the effect of substrate temperature on the optical properties of prepared thin films.

Optical properties have been studied from transmittance and absorbance spectral within wavelengths range (360 - 900 nm). The results show that all the prepared films have a direct electron transitions and optical energy gap between (2.31-2.44 eV). They also show that the transmittance and optical energy gap of films prepared from nitrate solution increase with increasing of substrate temperature, then transmittance start do

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Wed May 10 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Annealing Effect on the Optical Properties of (ZnO)x (CdO)1-x Films Obtained by Spray Pyrolysis
...Show More Authors

The effect of the annealing on the optical transmission , absorp tion coefficient,
dielectric constants (ε
r
),( ε
i
) ,Skin depth and the optical ener gy gap of (ZnO)x(CdO)1-x thin
films with (x=0.05) deposited on preheated glass substrates at a temperature of (450 C°) by
chemical pyrolysis technique were performed . These f ilms show direct allowed inter band
transition that influenced by annealing at ( 450 C°) for two hours . And it also found that the
optical ener gy gap has been increased fro m about (2.50 eV) before annealing to about (2.65
eV) after annealing , fro m the analysis of the absorp tion and transmission sp ectra in the
wavelength range (380-900nm) . The results show t

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Effect of concentrations ratios of NiO on the efficiency of solar cell for (CdO)1-x(NiO)x thin films
...Show More Authors

CdO:NiO/Si solar cell film was fabricated via deposition of CdO:NiO in different concentrations 1%, 3%, and 5% for NiO thin films in R.T and 723K, on n-type silicon substrate with approximately 200 nm thickness using pulse laser deposition. CdO:NiO/n-Si solar cell photovoltaic properties were examined under 60 mW/cm2 intensity illumination. The highest efficiency of the solar cell is 2.4% when the NiO concentration is 0.05 at 723K.

View Publication Preview PDF
Crossref
Publication Date
Mon Feb 18 2019
Journal Name
Iraqi Journal Of Physics
Studying the spectral properties of thin films of rhodamine (6G) dyes doped polymer (PMMA) dissolved in chloroform
...Show More Authors

              In the present work, poly methyl methacrylate (PMMA) doped with Rhodamine 6G was prepared. The spectral properties (absorption and fluorescence) of the films were studied at different concentrations (1x10-5, 2x10-5, 5x10-5, 7x10-5, and 1x10-4mol/l). The investigated samples were made in the form of thin films. This was achieved by dissolving a certain weight of PMMA in a fixed volume of chloroform, composite films was with thickness (25.8μm) at room temperature. The achieved results were pointed out that absorption and fluorescence spectra have taken a wide spectral rang so when increased the concentratio

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 10 2019
Journal Name
Iraqi Journal Of Physics
The effect of thickness on the optical properties of Cu2S thin films
...Show More Authors

In this work, the optical properties of Cu2S with different thickness
(1400, 2400, 4400) Ǻ have been prepared by chemical spray pyrolys
is method onto clean glass substrate heated at 283 oC ±2. The effect
of thickness on the optical properties of Cu2S has been studied. It
was found that the optical properties of the electronic transitions on
fundamental absorption edge were direct allowed and the value of the
optical energy gap of Cu2S (Eg) for direct transition decreased from
(2.4-2.1) eV with increasing of the thickness from (1400 - 4400)Ǻ
respectively. Also it was found that the absorption coefficient is
increased with increasing of thicknesses. The optical constants such<

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Feb 12 2019
Journal Name
Iraqi Journal Of Physics
Structural and optical properties of ZnO doped Mg thin films deposited by pulse laser deposition (PLD)
...Show More Authors

This paper reports the effect of Mg doping on structural and optical properties of ZnO prepared by pulse laser deposition (PLD). The films deposited on glass substrate using Nd:YAG laser (1064 nm) as the light source. The structure and optical properties were characterized by X-ray diffraction (XRD) and transmittance measurements. The films grown have a polycrystalline wurtzite structure and high transmission in the UV-Vis (300-900) nm. The optical energy gap of ZnO:Mg thin films could be controlled between (3.2eV and 3.9eV). The refractive index of ZnO:Mg thin films decreases with Mg doping. The extinction coefficient and the complex dielectric constant were also investigate.

View Publication Preview PDF
Crossref (2)
Crossref