The dielectric constant of most polymers is very low; the addition of TiO2 particles into the polymers provides an attractive and promising way to reach a high dielectric constant. Polymer-based materials with a high dielectric constant show great potential for energy storage applications. Four samples were prepared, one of them was polyurethane (PU) and the other were PU with different weight percent (wt %) of TiO2 (0.1, 0.2, 0.3) powder AFM test was used to distinguish the nanoparticles. The result shows that the most shape of these nanoparticles are spherical and the roughness average is 0.798 nm. The dielectric properties were measured for all samples before and after the exposure to the UV radiation. The result illustrates that the dielectric constant decreased and the dielectric loss increased, the amount of decrease in the dielectric constant decreases with the increasing of the TiO2 concentration that added to the PU and decreasing in the amount of dielectric loss.
The influence of different thickness (500, 1000, 1500, and 2000) nm on the electrical conductivity and Hall effect measurements have been investigated on the films of copper indium gallium selenide CuIn1-xGaxSe2 (CIGS) for x= 0.6.The films were produced using thermal evaporation technique on glass substrates at R.T from (CIGS) alloy. The electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated and calculated as function of thickness. All films contain two types of transport mechanisms of free carriers, and increases films thickness was fond to increase the electrical cAnductivity whereas the activation energy (Ea) would vary with films thickness. Hall Effect analysis resu
... Show MoreThe influence of different thickness (500, 1000, 1500, and 2000) nm on the electrical conductivity and Hall effect measurements have been investigated on the films of copper indium gallium selenide CuIn1-xGaxSe2 (CIGS) for x= 0.6.The films were produced using thermal evaporation technique on glass substrates at R.T from (CIGS) alloy. The electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated and calculated as function of thickness. All films contain two types of transport mechanisms of free carriers, and increase films thickness was fond to increase the electrical conductivity whereas the activation energy (Ea) would vary with f
... Show MoreCopper tin sulfide (Cu2SnS3) thin films have been grown on glass
substrate with different thicknesses (500, 750 and 1000) nm by flash
thermal evaporation method after prepare its alloy from their
elements with high purity. The as-deposited films were annealed at
473 K for 1h. Compositional analysis was done using Energy
dispersive spectroscopy (EDS). The microstructure of CTS powder
examined by SEM and found that the large crystal grains are shown
clearly in images. XRD investigation revealed that the alloy was
polycrystalline nature and has cubic structure with preferred
orientation along (111) plane, while as deposited films of different
thickness have amorphous structure and converted to polycrystalline
A polycrystalline CdTe film has been prepared by thermal evaporation technique on glass substrate at substrate temperature 423 K with 1.0 m thicknesses. The film was heated at various annealing temperature under vacuum (Ta =473, 523 and K). Some of physical properties of prepared films such as structural and optical properties were investigated. The patterns of X-ray diffraction analysis showed that the structure of CdTe powder and all films were polycrystalline and consist of a mixture of cubic and hexagonal phases and preferred orientation at (111) direction.
The optical measurements showed that un annealed and annealed CdTe films had direct energy gap (Eg). The Eg increased with increasing Ta. The refractive index and the real p
A 3D geological model is an essential step to reveal reservoir heterogeneity and reservoir properties distribution. In the present study, a three-dimensional geological model for the Mishrif reservoir was built based on data obtained from seven wells and core data. The methodology includes building a 3D grid and populating it with petrophysical properties such as (facies, porosity, water saturation, and net to gross ratio). The structural model was built based on a base contour map obtained from 2D seismic interpretation along with well tops from seven wells. A simple grid method was used to build the structural framework with 234x278x91 grid cells in the X, Y, and Z directions, respectively, with lengths equal to 150 meters. The to
... Show MoreFailure in asphalt mixture and distress in pavement are major issues to roads infrastructure. Selecting an appropriate chemical composition of asphalt cement is a key component in avoiding these issues. This work aimed to investigate the effect of the chemical composition of different polar fractions on the rheological and physical properties of asphalt cement. Four types of asphalt cement with penetration grades of 20/30, 40/50, 60/70 and 85/100 were divided into four fractions. Complex shear modules, rutting resistance and rotational viscosity of the asphalt cement were determined by using a Dynamic Shear Rheometer and a Rotation Viscometer, respectively. The results show that an increase in the asphaltene content and Gastel index resulte
... Show MoreThis paper reports on the experimental study, which conducted a series of triaxial tests for the asphalt concrete using hydrated lime as a mineral additive. Three HMA mixes, prepared by the specification for wearing, levelling and base layers, were studied under three different temperatures. The test results have demonstrated that, compared with the control mixes excluding HL, the permanent deformation resistance of the HL modified mixes has significant improvement. The deformation has been reduced at the same load repetition number, meanwhile the flow number has been considerably increased. The degree of improvement in permanent deformation resistance using HL is more pronounced at high stress deviation states and high temperature.
... Show MoreIn this research, the structural and optical properties were studied for Bi2O3 and Bi2O3: Al thin films with different doping ratios ( 1, 2, 3 ) % , which were prepared by thermal evaporation technique under vacuum , with thickness ( 450 ± 20 ) nm deposited on glass substrates at room temperature ( 300 ) K , Structural measurements by ( XRD) techniques demonstrated that all samples prepared have polycrystalline structure with tetragonal structure and a preferred orientation [ 201 ] the &n
... Show MoreScleral acrylic resin is widely used to synthesize ocular prosthesis. However, the properties of this material change over time, thus requiring the prosthesis to be refabricated. Many studies were conducted to improve these properties by reinforcing this material with nanoparticles. This study aims to evaluate the effect of silver nanoparticle powder on the mechanical properties (transverse flexural strength, impact strength, shear bond strength, surface microhardness, and surface roughness) of scleral acrylic resin used for ocular prostheses. Two concentrations were selected from the pilot study and evaluated for their effects on scleral acrylic resin properties. According to the pilot study, 0.01 and 0.02wt% AgNPs powder improved
... Show More