Pure Polyaniline salt, and protonation PANI by H2SO4 were synthesized by electro-chemical oxidative polymerization of aniline with acidity of H2SO4. The solution was prepared in reaction temperature equal 291 K and the acidity of aqueous solution was 1 molarities. The prepared polyaniline was characterized by FT-IR, the result indicate that the intensity is increase with increasing of applied voltage. The dc conductivity has been measured for bulk polyaniline pure and doped in the form of compressed pellet with evaporated Ohmic Al electrodes in temperature range (303-423) K. The Eav energy of the thermal rate process of the electrical conductivity was determined. The results indicate that the dc conductivity of doped samples are two or three orders of magnitude higher by comparison with the pure sample and found that the increasing in conductivity of prepared samples with applied voltage is systematic.
Communication of the human brain with the surroundings became reality by using Brain- Computer Interface (BCI) based mechanism. Electroencephalography (EEG) being the non-invasive method has become popular for interaction with the brain. Traditionally, the devices were used for clinical applications to detect various brain diseases but with the advancement in technologies, companies like Emotiv, NeuoSky are coming up with low cost, easily portable EEG based consumer graded devices that can be used in various application domains like gaming, education etc as these devices are comfortable to wear also. This paper reviews the fields where the EEG has shown its impact and the way it has p
This paper aims to find new analytical closed-forms to the solutions of the nonhomogeneous functional differential equations of the nth order with finite and constants delays and various initial delay conditions in terms of elementary functions using Laplace transform method. As well as, the definition of dynamical systems for ordinary differential equations is used to introduce the definition of dynamical systems for delay differential equations which contain multiple delays with a discussion of their dynamical properties: The exponential stability and strong stability
The evolution of the Internet of things (IoT) led to connect billions of heterogeneous physical devices together to improve the quality of human life by collecting data from their environment. However, there is a need to store huge data in big storage and high computational capabilities. Cloud computing can be used to store big data. The data of IoT devices is transferred using two types of protocols: Message Queuing Telemetry Transport (MQTT) and Hypertext Transfer Protocol (HTTP). This paper aims to make a high performance and more reliable system through efficient use of resources. Thus, load balancing in cloud computing is used to dynamically distribute the workload across nodes to avoid overloading any individual r
... Show MoreBackground: Polycystic ovary syndrome (PCOS) has an unknown and complex etiology. It affects 5–10% of women in the reproductive age. Patients are known to have increased ovarian androgen production that is associated with decreased menses, hirsutism, and acne. Urinary tract stones (UTS) are a multifactorial disorder, with age and sex being known risk factors. Many PCOS patients are obese, and links between nephrolithiasis and obesity have been shown previously. Objectives: To identify the relation between PCOS and UTS considering the patients' body mass index (BMI). Methods: This is a cross-sectional study that enrolled 407 women aged 18-40 who attended the gynecology and obstetrics clinic at Al-Elwiya Maternity Teaching Hospital.
... Show MoreVehicular Ad Hoc Networks (VANETs) are integral to Intelligent Transportation Systems (ITS), enabling real-time communication between vehicles and infrastructure to enhance traffic flow, road safety, and passenger experience. However, the open and dynamic nature of VANETs presents significant privacy and security challenges, including data eavesdropping, message manipulation, and unauthorized access. This study addresses these concerns by leveraging advancements in Fog Computing (FC), which offers lowlatency, distributed data processing near-end devices to enhance the resilience and security of VANET communications. The paper comprehensively analyzes the security frameworks for fog-enabled VANETs, introducing a novel taxonomy that c
... Show More<p>Vehicular ad-hoc networks (VANET) suffer from dynamic network environment and topological instability that caused by high mobility feature and varying vehicles density. Emerging 5G mobile technologies offer new opportunities to design improved VANET architecture for future intelligent transportation system. However, current software defined networking (SDN) based handover schemes face poor handover performance in VANET environment with notable issues in connection establishment and ongoing communication sessions. These poor connectivity and inflexibility challenges appear at high vehicles speed and high data rate services. Therefore, this paper proposes a flexible handover solution for VANET networks by integrating SDN and
... Show MoreImmune-mediated hepatitis is a severe impendence to human health, and no effective treatment is currently available. Therefore, new, safe, low-cost therapies are desperately required. Berbamine (BE), a natural substance obtained primarily from
This c
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for
Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show More