The synthesis of conducting polyaniline (PANI) nanocomposites containing various concentrations of functionalized single-walled carbon nanotubes (f-SWCNT) were synthesized by in situ polymerization of aniline monomer. The morphological and electrical properties of pure PANI and PANI/SWCNT nanocomposites were examined by using Fourier transform- infrared spectroscopy (FTIR), and Atomic Force Microscopy (AFM) respectively. The FTIR shows the aniline monomers were polymerized on the surface of SWCNTs, depending on the -* electron interaction between aniline monomers and SWCNTs. AFM analysis showed increasing in the roughness with increasing SWCNT content. The AC, DC electrical conductivities of pure PANI and PANI/SWCNT nanocomposite have been measured in frequency range (50Hz - 600KHz) and in the temperature range from (30 to 160K). The results show the electrical conductivity of the nanocomposite is higher than pure PANI.
Recently, many materials have shown that they can be used as alternatives to chemicals materials in order to be used to improve the properties of drilling fluids. Some of these materials are banana peels and corn cobs which both are considered environmentally- friendly materials. The results of the X-ray diffraction examination have proved that the main components of these materials are cellulose and hemicellulose, which contribute greatly to the increasing of the effectiveness of these two materials. Due to their distinct composition, these two materials have improved the rheological properties (plastic viscosity and yield point) and reduced the filtration of the drilling fluids to a large extent. The addition rates used for each o
... Show MoreThis study investigates the influence of silver oxide (Ag2O) concentration on the optical characteristics of phosphate bioactive glasses (PBGs). PBGs have emerged as promising alternatives to conventional silicate glasses in the medical field due to their excellent bioactivity and chemical resistance. Samples with varying Ag2O concentrations (0, 0.25, 0.5, and 0.75g) were sintered at 780°C for 2 hrs in an electric furnace. The samples were subjected to Fourier transfer infrared spectroscopy (FTIR), ultraviolet-visible (UV-Vis) spectroscopy, and photoluminescence (PL) tests to assess their functional groups and optical properties. By analyzing the FTIR spectrum of phosphate bioactive glass containing different amounts of Ag2O, it is
... Show MoreApplications of superconductor compounds were considered as modern and important topics, especially these which are exposures to one of the nuclear radiation kinds. So, we gone to investigate the influence of fast neutrons irradiation on electrical and structural characteristics of HgxSb1-xBa2Ca2Cu3O8+δ superconducting compound at (x = 0.7) in ratio. The superconducting specimens were synthesized using solid state technique. Specimens were exposure to the nuclear radiation using fast neutrons with doses (0, 9.06 x1010, 15.3 x 1010 and 18.17 x 1010) n/cm2 respectively. Electrical and X-ray diffraction properties of superconductor specimens before and after irradiation were investigated under standard conditions. Results of X-ray diffraction
... Show MoreThe paper include study the effect thickness of the polymeric sample which is manufactured by thermo press way. The sample was used as an active tunable R6G laser media. The remarks show that, when the thickness of the samples is increased, with the same concentration, the spectrum will shift towards the short wavelength, & the quantum fluorescence yield will increased. The best result we obtained for the quantum fluorescence yield is (0.68) at the sample, with thickness (0.304mm) in Ethanol solvent, while when we used the Pure Water as a solvent, we found that the best quantum fluorescence yield is (0.63) at (0.18mm) thickness of the sample.
Background: elastomeric impression materials are indicated when a high degree of accuracy is required, due to their excellent properties like details reproduction, dimensional stability and tear strength but with main two disadvantages those are their hydrophilicity as well as the absence of antibacterial activity. This study aimed to evaluate the effect of incorporation of 0.5% wt Ag-Zn zeolite into condensation silicone through the following tests; setting time, dimensional stability, reproduction of details, wettability, and hardness . Materials and methods: one hundred specimens were constructed of condensation silicone, divided into two groups for the first 50 specimens one0.5% by wt Ag -Zn zeolite was added, keeping the other fifty sp
... Show MoreIn this research, damping properties for composite materials were evaluated using logarithmic decrement method to study the effect of reinforcements on the damping ratio of the epoxy matrix. Three stages of composites were prepared in this research. The first stage included preparing binary blends of epoxy (EP) and different weight percentages of polysulfide rubber (PSR) (0%, 2.5%, 5%, 7.5% and 10%). It was found that the weight percentage 5% of polysulfide was the best percentage, which gives the best mechanical properties for the blend matrix. The advantage of this blend matrix is that; it mediates between the brittle properties of epoxy and the flexible properties of a blend matrix with the highest percentage of PSR. The second stage
... Show MoreThe present research investigates joints welding of 304L austenitic stainless steel using metal inert gas (MIG) welding method. The research explores the effect of process parameters (arc voltage, wire feed rate, and electrode wire diameter) on the mechanical properties of stainless steel. The above variables are varied respectively with 18.5, 19, 19.5 V, 116, 127, 137 mm/s, and 0.8, 1, 1.2 mm, with E308L as a filler electrode. The design matrix of the experiments was determined using the design of experiment (DOE) program Minitab 17 based on the levels of input elements used. The Taguchi orthogonal matrix methodology (Taguchi) technique was used to develop some empirical analysis for the maximum tensile strength and proper surface
... Show MoreIn this research, nanocomposites of poly(methyl methacrylate) (PMMA) and a mixture of nano silica (SiO2) and nano zirconia (ZrO2) were prepared in different weight percentages of the nano fillers to improve some of the properties of PMMA resin to be used as a denture base material. The nano filles were surface modified with a coupling agent and added to the PMMA in different amounts. Impact strength, transverse strength, hardness and roughness were tested for both control and experimental groups. The results indicate that PMMA/silica/zirconia nanocomposites, prepared with 5% by weight of both types of fillers, had a slight increase in impact s