A huge potential from researchers was presented for enhancing the nonlinear optical response for materials that interacts by light. In this work, we study the nonlinear optical response for chemically prepared nano- fluid of silver nanoparticles in de-ionized water with TSC (Tri-sodium citrate) protecting agent. By the means of self-defocusing technique and under CW 473 nm blue laser, the reflected diffraction pattern were observed and recorded by CCD camera. The results demonstrate that, the Ag nano-fluid shows a good third order nonlinear response and the magnitude of the nonlinear refractive index was in the order of 10−7 cm2/W. We determine the maximum change of the nonlinear refractive index and the related phase shift for the material at six input laser intensities.
In this research prepared two composite materials , the first prepared from unsaturated polyester resin (UP) , which is a matrix , and aluminum oxide (Al2O3) , and the second prepared from unsaturated polyester resin and aluminum oxide and copper oxide (CuO) , the two composites materials (Alone and Hybrid) of percentage weight (5,10,15)% . All samples were prepared by hand layup process, and study the electrical and thermal conductivity. The results showed decrease electrical conductivity from (10 - 2.39) ×10-15 for (Up+ Al2O3) and from (10 - 2.06)×10-15 for (Up+ Al2O3+ CuO) .But increase thermal conductivity from( 0.17 - 0.505) for (Up+ Al2O3) and from (0.17 - 0.489) for (Up+ Al2O3+ CuO).
The physical and elastic characteristics of rocks determine rock strengths in general. Rock strength is frequently assessed using porosity well logs such as neutron and sonic logs. The essential criteria for estimating rock mechanic parameters in petroleum engineering research are uniaxial compressive strength and elastic modulus. Indirect estimation using well-log data is necessary to measure these variables. This study attempts to create a single regression model that can accurately forecast rock mechanic characteristics for the Harth Carbonate Formation in the Fauqi oil field. According to the findings of this study, petrophysical parameters are reliable indexes for determining rock mechanical properties having good performance p
... Show MoreIn this study, pure SnO2 Nanoparticles doped with Cu were synthesized by a chemical precipitation method. Using SnCl2.2H2O, CuCl2.2H2O as raw materials, the materials were annealed at 550°C for 3 hours in order to improve crystallization. The XRD results showed that the samples crystallized in the tetragonal rutile type SnO2 stage. As the average SnO2 crystal size is pure 9nm and varies with the change of Cu doping (0.5%, 1%, 1.5%, 2%, 2.5%, 3%),( 8.35, 8.36, 8.67, 9 ,7, 8.86)nm respectively an increase in crystal size to 2.5% decreases at this rate and that the crystal of SnO2 does not change with the introduction of Cu, and S
... Show MoreLaser etching may be an alternative to acid etching of enamel and dentin. Several characteristics of irradiated dental hard tissues have been considered advantageous, microscopically rough surfaces without demineralization, open dentinal tubules without smear layer production and dentin surface sterilization. The aim of this study is to determine and compare histology the microleakage in class V cavity restored with a light cured composite after conditioning the samples(tooth surface) with 1-acid etching, 2-Q-switched Nd:YAG Laser etching and finally 3- acid and laser etching. Materials and methods: Twenty four non carious human extracted teeth were used in this study. The samples were equally grouped into four groups of six teeth each.
... Show MoreResults of a study of alloys and films with various Pb content have been reported and discussed. Films of of thickness 1.5
In this work, ZnO nanostructures for powder ZnO were synthesized by Hydrothermal Method. Size and shape of ZnO nanostructureas can be controlled by change ammonia concentration. In the preparation of ZnO nanostructure, zinc nitrate hexahydrate [Zn(NO3)2·6H2O] was used as a precursor. The structure and morphology of ZnO nanostructure have been characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD). The synthesized ZnO nanostructures have a hexagonal wurtzite structure. Also using Zeta potential and Particle Size Analyzers and size distribution of the ZnO powder