Lead selenide PbSe thin films of different thicknesses (300, 500, and 700 nm) were deposited under vacuum using thermal evaporation method on glass substrates. X-ray diffraction measurements showed that increasing of thickness lead to well crystallize the prepared samples, such that the crystallite size increases while the dislocation density decreases with thickness increasing. A.C conductivity, dielectric constants, and loss tangent are studied as function to thickness, frequency (10kHz-10MHz) and temperatures (293K-493K). The conductivity measurements confirm confirmed that hopping is the mechanism responsible for the conduction process. Increasing of thickness decreases the thermal activation energy estimated from Arhinus equation is found to decrease with thickness increasing. The increase of thickness lead to reduce the polarizability α while the increasing of temperature lead to increase α.
The characterization of ZnO and ZnO:In thin films were confirmed by spray pyrolysis technique. The films were deposited onto glass substrate at a temperature of 450°C. Optical absorption measurements were also studied by UV-VIS technique in the wavelength range 300-900 nm which was used to calculate the optical constants. The changes in dispersion and Urbach parameters were investigated as a function of In content. The optical energy gap was decreased and the wide band tails were increased in width from 616 to 844 eV as the In content increased from 0wt.% to 3wt.%. The single–oscillator parameters were determined also the change in dispersion was investigated before and after doping.
Pure SnSe thin film and doped with S at different percentage (0,3,5,7)% were deposited from alloy by thermal evaporation technique on glass substrate at room temperature with 400±20nm thickness .The influences of S dopant ratio on characterization of SnSe thin film Nano crystalline was investigated by using Atomic force microscopy(AFM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), Hall Effect measurement, UV-Vis absorption spectroscopy to study morphological, structural, electrical and optical properties respectively .The XRD showed that all the films have polycrystalline in nature with orthorhombic structure, with preferred orientation along (111)plane .These films was manufactured of very fine crystalline size in the ra
... Show MoreBlends of Polymethyl methacrylate (PMMA)/polyvinyl alcohol (PVA) doped with 2% weight percentage of Sn were prepared with different blend ratios using casting technique. The measurements of A.C conductivity σa.c within the frequency range (25kHz – 5MHz) of undoped and Sn doped PMMA/PVA blends obeyed the relationship σ= Aws were the value of s within the range 0 > s > 1. The results showed that σa.c increases with the increase of frequency. The exponent s showed preceding increase with the increase of PVA content for PMMA/PVA blends doped with Sn. The dielectric constant, dielectric loss, A.C electrical conductivity are varied with the concentration of PVA in the blend and frequency of applied electrical field.
In the current research, we investigated the absorption spectrum for R590 and C480 dyes in ethanol solvent for different dye solution concentrations of 10-4, 10-5 and 10-6M. These dyes have been prepared and studied before and after gamma irradiation (first, second ionization) using cesium-137 source with absorbed doses of 18.36 Gy (time exposure of 10 days) and 73.44 Gy (with time exposure of 40 days). We noticed that the absorption intensity was decreased with decreasing concentration, before gamma irradiation while the absorption spectrum peak shifted towards the short wavelength (blue shift). It was also found that the intensity of absorption spectrum increased and shifted the absorption spectrum peak towards the long wavelength (red
... Show MoreThe work includes fabrication of undoped and silver-doped nanostructured nickel oxide in form thin films, which use for applications such as gas sensors. Pulsed-laser deposition (PLD) technique was used to fabricate the films on a glass substrate. The structure of films is studied by using techniques of x-ray diffraction, SEM, and EDX. Thermal annealing was performed on these films at 450°C to introduce its effect on the characteristics of these films. The films were doped with a silver element at different doping levels and both electrical and gas sensing characteristics were studied and compared to those of the undoped films. Reasonable enhancements in these characteristics were observed and attributed to the effects of thermal annealing
... Show MoreThin films samples of Bismuth sulfide Bi2S3 had deposited on
glass substrate using thermal evaporation method by chemical
method under vacuum of 10-5 Toor. XRD and AFM were used to
check the structure and morphology of the Bi2S3 thin films. The
results showed that the films with law thickness <700 nm were free
from any diffraction peaks refer to amorphous structure while films
with thickness≥700 nm was polycrystalline. The roughness decreases
while average grain size increases with the increase of thickness. The
A.C conductivity as function of frequency had studied in the
frequency range (50 to 5x106 Hz). The dielectric constant,
polarizability showed significant dependence upon the variation of
thic
The consequences of ionizing radiation-induced oxidative stress on radiographers in X-ray and CT-scan departments utilizing several biochemical were analyzed. The study found highly considerable discrepancies in the interplay between radiation levels and gender in terms of mean Malondialdehyde (MAD), Vitamin D3 (Vit.D3), Triiodothyronine (T3), Thyroxine (T4), and High-Density Lipoprotein (HDL), but not Thyroid Stimulating Hormone (TSH), cholesterol, triglyceride (TG) and Low-Density Lipoprotein (LDL). The findings indicated that malondialdehyde is a useful biomarker for assessing oxidative stress in radiographers with exposure to ionizing radiation.
In this paper we proposed the method of X-ray fluorescence (XRF) determination of some essential trace elements in medicinal herbs and vitamin-mineral complexes at the level of 100-101 mg/ml. To increase sensitivity and selectivity of the determination we simple and effective approach based on the extraction of metal ions from aqueous solutions with chemically modified polyurethane foam sorbents followed by direct XRF analysis. The conditions of sorption preconcentration of Co(II), Ni(II) and Zn(II) ions with modified sorbents were optimized. The proposed approach is used for the determination of trace elements in several kinds of medicinal herbs (coltsfoot leaves, nettle leaves and yarrow herb) and vitamin-mineral
... Show MoreThe purpose of this study is to measure doses delivered at different depths in water phantom at vertical position in comparison with the actual planning in order to verify the dose delivered to the tumor in addition to the measurement of the effect penumbra dose to assess the dose leaking to the healthy soft tissue.
Percentage depth dose (PDD) values was measured at field sizes (5×5,10×10,15×15, and 20×20) cm2, and the depth dose was measured between (0-16) cm deep at 4cm intervals, for both energies 6 MeV and 10 MeV X-ray beam. Other readings were taken at different distances 1cm and 2cm outside of the actual beam in orthogonal directions at depth of 4 cm. These measurements we
... Show MoreLead-free ferroelectric nano ceramics of BaZrxTi1-xO3 (x=0.1, 0.2 and 0.3) were prepared by means of microwave assisted chemical route. The structural, dielectric and electrical properties were examined. The crystalline structure of the specimens was studied by X-ray diffraction patterns. All the samples showed pure single phase of perovskite structure with space group of I4/mcm. X-ray diffraction data illustrated that there is no secondary phases exist. Structural and electrical properties of barium titanate ceramics are influenced significantly by small additions of Zr. The electrical conductivity showed higher values at x=0.2 and decreased at higher Zr content. The Hall charge mobility is found
... Show More