This study focuses on synthesizing Niobium pentoxide (Nb2O5) thin films on silicon wafers and quartz substrates using DC reactive magnetron sputtering for NO2 gas sensors. The films undergo annealing in ambient air at 800 °C for 1 hr. Various characterization techniques, including X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity measurements, are employed to evaluate the structural, morphological, electrical, and sensing properties of the Nb2O5 thin films. XRD analysis confirms the polycrystalline nature and hexagonal crystal structure of Nb2O5. The optical band gap values of the Nb2O5 thin films demonstrate a decrease from 4.74 to 3.73 eV as the sputtering power is increased from 25 to 75 W. AFM images illustrate a progressive increase in particle size ranging from (41.86) to (45.56) nm, with varying sputtering power between 25 and 75 W. Additionally, EDS analysis validates the rise in Nb content, increasing from 12.2 at. % to 20.1 at. %, corresponding to the increase in sputtering power. Hall effect measurements show that all films exhibit n-type charge carriers, and increasing sputtering power leads to decreased carrier concentration and enhanced mobility. The gas sensor's sensitivity, response, and recovery time were evaluated at various operating temperatures. The NO2 sensor exhibited an optimal sensitivity of 28.6% at 200 °C when the sputtering power was set to 50 W.
Quantum dots (QDs) can be defined as nanoparticles (NPs) in which the movement of charge carriers is restricted in all directions. CdTe QDs are one of the most important semiconducting crystals among other various types where it has a direct energy gap of about 1.53 eV. The aim of this study is to exaine the optical and structural properties of the 3MPA capped CdTe QDs. The preparation method was based on the work of Ncapayi et al. for preparing 3MPA CdTe QDs, and hen, the same way was treated as by Ahmed et al. via hydrothermal method by using an autoclave at the same temperature but at a different reaction time. The direct optical energy gap of CdTe QDs is between 2.29 eV and 2.50 eV. The FTIR results confirmed the covalent bonding betwee
... Show MoreMature oil reservoirs surrounded with strong edge and bottom water drive aquifers experience pressure depletion and water coning/cresting. This laboratory research investigated the effects of bottom water drive and gas breakthrough on immiscible CO2-Assisted Gravity Drainage (CO2-AGD), focusing on substantial bottom water drive. The CO2-AGD method vertically separates the injected CO2 to formulate a gas cap and Oil. Visual experimental evaluation of CO2-AGD process performance was performed using a Hele-Shaw model. Water-wet sand was used for the experiments. The gas used for injection was pure CO2, and the “oleic” phase was n-decane with a negative spreading coefficient. The aqueous phase was deionized water. To evaluate the feasibilit
... Show MoreIn this paper Alx Ga1-x As:H films have been prepared by using new deposition method based on combination of flash- thermal evaporation technique. The thickness of our samples was about 300nm. The Al concentration was altered within the 0 x 40.
The results of X- ray diffraction analysis (XRD) confirmed the amorphous structure of all AlXGa1-x As:H films with x 40 and annealing temperature (Ta)<200°C. the temperature dependence of the DC conductivity GDC with various Al content has been measured for AlXGa1-x As:H films.
We have found that the thermal activation energy Ea depends of Al content and Ta, thus the value of Ea were approximately equal to half the value of optical gap.
In the present work, a z-scan technique was used to study the nonlinear optical properties, represented by the nonlinear refractive index and nonlinear absorption coefficients of nanoparticles cadmium sulfide thin film. The sample was prepared by the chemical bath deposition method. Several testing were done including, x-ray, transmission and thickness of thin film. z-Scan experiment was performed at two wavelengths (1064 nm and 532 nm) and different energies. The results showed the effect of self-focusing in the material at higher intensities, which evaluated n2 to be (0.11-0.16) cm2/GW. The effect of two-photon absorption was studied, which evaluated β to be (24-106) cm/GW. In addition, the optical limiting behavior has been studied.
... Show MoreSolutions of dyes Rhodamine 6G (Rh6G) and Coumarin480(C480) were prepared at five concentrations (1x10-3, 5x10-4, 1x10-4, 5x10-5 and1x10-5) mol/l, the mixing was stirred to obtain on a homogenous solution, the(poly methyl-methacrylate) (PMMA) was solved by chloroform solvent with certain ratio, afterward (PMMA+Rh6G) and (PMMA+C480) thin films were prepared by casting method on glass block which has substrate with dimensions (7.5 x2.5)cm2, the prepared samples were left in dark place at room temperature for 24 hours to obtain uniform and homogenous thin films. UV-VIS absorption spectra, transmission spectra and fluorescence spectra were done to measure linear refractive index and linear absorption coefficient. The nonlinear optical proper
... Show MoreIn the present work, the feasibility of formation near-ideal ohmic behavior of In/n-Si contact efficiently by 300 s duration Nd:YAG pulsed laser processing has been recognized. Several laser pulses energy densities have been used, and the optimal energy density that gives best results is obtained. Topography of the irradiated region was extensively discussed and supported with micrographic illustrations to determine the surface condition that can play the important role in the ohmic contact quality. I-V characteristics in the forward and reverse bias and barrier height measurements have been studied for different irradiated samples to determine the laser energy density that gives best ohmic behavior. Comparing the current results with
... Show MoreTwo molecular imprinted polymer (MIP) membranes for Levofloxacin (LEV) were prepared based on PVC matrix. The imprinted polymers were prepared by polymerization of styrene (STY) as monomer, N,N methylene di acrylamide as a cross linker ,benzoyl peroxide (BPO) as an initiator and levofloxacin as a template. Di methyl adepate (DMA) and acetophenone (AOPH) were used as plasticizers , the molecular imprinted membranes and the non molecular imprinted membranes were prepared. The slopes and detection limits of the liquid electrodes ranged from -21.96 – -19.38 mV/decade and 2×10-4M- 4×10-4M, and Its response time was around 1 minute, respectively. The liquid electrodes were packed with 0.1 M standar
... Show MoreIn this study, pure SnO2 Nanoparticles doped with Cu were synthesized by a chemical precipitation method. Using SnCl2.2H2O, CuCl2.2H2O as raw materials, the materials were annealed at 550°C for 3 hours in order to improve crystallization. The XRD results showed that the samples crystallized in the tetragonal rutile type SnO2 stage. As the average SnO2 crystal size is pure 9nm and varies with the change of Cu doping (0.5%, 1%, 1.5%, 2%, 2.5%, 3%),( 8.35, 8.36, 8.67, 9 ,7, 8.86)nm respectively an increase in crystal size to 2.5% decreases at this rate and that the crystal of SnO2 does not change with the introduction of Cu, and S
... Show MoreTo damp the low-frequency oscillations which occurred due to the disturbances in the electrical power system, the generators are equipped with Power System Stabilizer (PSS) that provide supplementary feedback stabilizing signals. The low-frequency oscillations in power system are classified as local mode oscillations, intra-area mode oscillation, and interarea mode oscillations. A suitable PSS model was selected considering the low frequencies oscillation in the inter-area mode based on conventional PSS and Fuzzy Logic Controller. Two types of (FIS) Mamdani and suggeno were considered in this paper. The software of the methods was executed using MATLAB R2015a package.