This study focuses on synthesizing Niobium pentoxide (Nb2O5) thin films on silicon wafers and quartz substrates using DC reactive magnetron sputtering for NO2 gas sensors. The films undergo annealing in ambient air at 800 °C for 1 hr. Various characterization techniques, including X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity measurements, are employed to evaluate the structural, morphological, electrical, and sensing properties of the Nb2O5 thin films. XRD analysis confirms the polycrystalline nature and hexagonal crystal structure of Nb2O5. The optical band gap values of the Nb2O5 thin films demonstrate a decrease from 4.74 to 3.73 eV as the sputtering power is increased from 25 to 75 W. AFM images illustrate a progressive increase in particle size ranging from (41.86) to (45.56) nm, with varying sputtering power between 25 and 75 W. Additionally, EDS analysis validates the rise in Nb content, increasing from 12.2 at. % to 20.1 at. %, corresponding to the increase in sputtering power. Hall effect measurements show that all films exhibit n-type charge carriers, and increasing sputtering power leads to decreased carrier concentration and enhanced mobility. The gas sensor's sensitivity, response, and recovery time were evaluated at various operating temperatures. The NO2 sensor exhibited an optimal sensitivity of 28.6% at 200 °C when the sputtering power was set to 50 W.
Diamond-like carbon (DLC) homogeneous thin films were deposited from cyclohexane (Ccyclohexane (Ccyclohexane (Ccyclohexane (C cyclohexane (Ccyclohexane (Ccyclohexane (C cyclohexane (Ccyclohexane (C 6H12 ) liquid by using a plasma jet system which operates with alternating high voltage 7.5 which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5 which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5 which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5 which operates with alternating high voltage 7.5which operates with al
... Show MoreObjective: This study aimed to evaluate the effect of coating titanium (Ti) dental implant with polyether ketone ketone (PEKK) polymer using magnetron sputtering on osseointegration, trying to overcome some of the problems associated with Ti alloys. Material and Methods: Implants were prepared from grade (II) commercially pure titanium (CP Ti), then laser was used to induce roughness on the surface of Ti. PEKK was deposited on the surface of Ti implants by radiofrequency (RF) magnetron sputtering technique. The implants were divided in to three groups: without coating (Ls), with PEKK coating using argon (Ar) as sputtering gas (Ls-PEKK-Ar), and with PEKK coating using nitrogen (N) as sputtering gas (Ls-PEKK-N). All the implants were implante
... Show MoreCadmium Oxide and Bi doped Cadmium Oxide thin films are prepared by using the chemical spray pyrolysis technique a glass substrate at a temperature of (400?C) with volumetric concentration (2,4)%. The thickness of all prepared films is about (400±20) nm. Transmittance and Absorbance spectra are recorded in the wave length ranged (400-800) nm. The nature of electronic transitions is determined, it is found out that these films have directly allowed transition with an optical energy gap of (2.37( eV for CdO and ) 2.59, 2.62) eV for (2% ,4%) Bi doped CdO respectively. The optical constants have been evaluated before and after doping.
ABSTRACT: Thin film of CdS has been deposited onto clean glass substrate by using Spray pyrolysis technique. Results of Morphological (AFM) studied; electrical properties and optical conductivity studied are analysis. AFM results show a crystalline nature of the films. From the conductivity measurement at different temperatures, the activation energy of the films was calculated and found to be between 0.188 - 0.124 eV for low temperature regions, and between 1.67-1.19eV for high temperature regions. Hall measurements of electrical properties at room temperature show that the resistivity and mobility of CdS polycrystalline films deposited at 400 C0, were 3.878x103 . cm and 1.302x104cm2/ (V.s), respectively. The electrical conductivity of th
... Show MoreThin films of ZnO nano crystalline doped with different concentrations (0, 6, 9, 12, and 18 )wt. % of copper were deposited on a glass substrate via pulsed laser deposition method (PLD). The properties of ZnO: Cu thin-nanofilms have been studied by absorbing UV-VIS, X-ray diffraction (XRD) and atomic force microscopes (AFM). UV-VIS spectroscopy was used to determine the type and value of the optical energy gap, while X-ray diffraction was used to examine the structure and determine the size of the crystals. Atomic force microscopes were used to study the surface formation of precipitated materials. The UV-VIS spectroscopy was used to determine the type and value of the optical energy gap.
Films of CdSe have been prepared by evaporation technique with thickness 1µm. Doping with Cu was achieved using annealing under argon atmosphere . The Structure properties of these films are investigated by X-ray diffraction analysis. The effect of Cu doping on the orientation , relative intensity, grain size and the lattice constant has been studied. The pure CdSe films have been found consist of amorphous structure with very small peak at (002) plane. The films were polycrystalline for doped CdSe with (1&2wt%) Cu contents and with lattice constant (a=3.741,c=7.096)A°, and it has better crystallinty as the Cu contents increased to (3&5wt%) Cu. The reflections from [(002), (102). (110), (112), and (201)]planes are more prominen
... Show MoreIn this work, the plasma parameters (electron temperature and
electron density) were determined by optical emission spectroscopy
(OES) produced by the RF magnetron Zn plasma produced by
oxygen and argon at different working pressure. The spectrum was
recorded by spectrometer supplied with CCD camera, computer and
NIST standard of neutral and ionic lines of Zn, argon and oxygen.
The effects of pressure on plasma parameters were studied and a
comparison between the two gasses was made.