Because of the quick growth of electrical instruments used in noxious gas detection, the importance of gas sensors has increased. X-ray diffraction (XRD) can be used to examine the crystal phase structure of sensing materials, which affects the properties of gas sensing. This contributes to the study of the effect of electrochemical synthesis of titanium dioxide (TiO2) materials with various crystal phase shapes, such as rutile TiO2 (R-TiO2NTs) and anatase TiO2 (A-TiO2NTs). In this work, we have studied the effect of voltage on preparing TiO2 nanotube arrays via the anodization technique for gas sensor applications. The results acquired from XRD, energy dispersion spectroscopy (EDX), and field emission scanning electron microscopy (FE-SEM) elucidate that TiO2 was created. In addition, systematically examining the gas detection properties was also done. The gas sensor was produced from TiO2 nanotubes, and the gas-detecting features were directed at nitrogen dioxide (NO2), which is a hazardous gas. The sensor formed from TiO2 nanotubes detects NO2 gas at various temperatures, from room temperature to 300 oC, and it has good sensitivity to this gas. The results exhibit that the gas sensor that was synthesized at 30 V has good sensitivity and a short response time at room temperature for NO2 gas sensing.
In some cases, researchers need to know the causal effect of the treatment in order to know the extent of the effect of the treatment on the sample in order to continue to give the treatment or stop the treatment because it is of no use. The local weighted least squares method was used to estimate the parameters of the fuzzy regression discontinuous model, and the local polynomial method was used to estimate the bandwidth. Data were generated with sample sizes (75,100,125,150 ) in repetition 1000. An experiment was conducted at the Innovation Institute for remedial lessons in 2021 for 72 students participating in the institute and data collection. Those who used the treatment had an increase in their score after
... Show MoreIn this paper two axis sun tracking method is used to absorb maximum power from the sun's rays on the solar panel via calculating the sun’s altitude and azimuth angles, which describe the solar position on the Iraqi capital Baghdad for the hours 6:00, 7:00, 8:00, 9:00, 12:00, 15:00 and 17:00 per day. The angles were calculated in an average approach within one month, so certain values were determined for each month. The daily energy achieved was calculated for the solar tracking method compared with the fixed tracking method. Designed, modeled and simulated a control circuit consisting of reference position truth table, PI Controller and two servomotors that tracked the sun position to adjust the PV panel perpendicular
... Show MoreThe effect of cognitive trips via the Internet (web quest) accompanying practical lessons in learning some basic handball skills for female students
This paper aims to propose a hybrid approach of two powerful methods, namely the differential transform and finite difference methods, to obtain the solution of the coupled Whitham-Broer-Kaup-Like equations which arises in shallow-water wave theory. The capability of the method to such problems is verified by taking different parameters and initial conditions. The numerical simulations are depicted in 2D and 3D graphs. It is shown that the used approach returns accurate solutions for this type of problems in comparison with the analytic ones.
The physical substance at high energy level with specific circumstances; tend to behave harsh and complicated, meanwhile, sustaining equilibrium or non-equilibrium thermodynamic of the system. Measurement of the temperature by ordinary techniques in these cases is not applicable at all. Likewise, there is a need to apply mathematical models in numerous critical applications to measure the temperature accurately at an atomic level of the matter. Those mathematical models follow statistical rules with different distribution approaches of quantities energy of the system. However, these approaches have functional effects at microscopic and macroscopic levels of that system. Therefore, this research study represents an innovative of a wi
... Show MoreThe development of Web 2.0 has improved people's ability to share their opinions. These opinions serve as an important piece of knowledge for other reviewers. To figure out what the opinions is all about, an automatic system of analysis is needed. Aspect-based sentiment analysis is the most important research topic conducted to extract reviewers-opinions about certain attribute, for instance opinion-target (aspect). In aspect-based tasks, the identification of the implicit aspect such as aspects implicitly implied in a review, is the most challenging task to accomplish. However, this paper strives to identify the implicit aspects based on hierarchical algorithm incorporated with common-sense knowledge by means of dimensionality reduction.
Copula modeling is widely used in modern statistics. The boundary bias problem is one of the problems faced when estimating by nonparametric methods, as kernel estimators are the most common in nonparametric estimation. In this paper, the copula density function was estimated using the probit transformation nonparametric method in order to get rid of the boundary bias problem that the kernel estimators suffer from. Using simulation for three nonparametric methods to estimate the copula density function and we proposed a new method that is better than the rest of the methods by five types of copulas with different sample sizes and different levels of correlation between the copula variables and the different parameters for the function. The
... Show MoreWith the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show More