Preferred Language
Articles
/
ijp-114
Fabrication and characterization of porous silicon for humidity sensor application

Porous Silicon (PS) layer has been prepared from p-type silicon by electrochemical etching method. The morphology properties of PS samples that prepared with different current density has been study using atom force measurement (AFM) and it show that the Layer of pore has sponge like stricture and the average pore diameter of PS layer increase with etching current density increase .The x-ray diffraction (XRD) pattern indicated the nanocrystaline of the sample. Reflectivity of the sample surface is decrease when etching current density increases because of porosity increase on surface of sample. The photolumenses (PL) intensity increase with increase etching current density. The PL is affected by relative humidity (RH) level so we can use as humidity sensor. The electrical resistivity has been increased after PS layer formed due to the variation of the pore size and it was much higher after increase etching current.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
Optik
Scopus (14)
Crossref (14)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Sep 01 2020
Journal Name
Optik
Scopus (41)
Crossref (35)
Scopus Clarivate Crossref
View Publication
Publication Date
Fri Sep 01 2023
Journal Name
Iraqi Journal Of Physics
Fabrication and Characterization of Silicon Nanowires Heterojunction Solar Cell

Silicon nanowire arrays (SiNWs) are created utilizing the metal-assisted chemical etching method with an Ag metal as a catalyst and different etching time of 15, 30, and 60 minutes using n-Si (100). Physical properties such as structural, surface morphology, and optical properties of the prepared SiNWs are studied. The diameter of prepared SiNWs ranged from 20 to 280 nm, and the reflectance in the visible part of the wavelength spectrum was less than 1% for all prepared samples. The obtained energy gap of prepared SiNWs was around 2 eV, which is higher than the energy gap of bulk silicon. X-ray diffraction (XRD) has diffraction peaks at 68.70o for all prepared samples. The heterojunction solar cell was fabricated based on the

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
PANI/MWCNT based humidity sensor

Polyaniline Multi wall Carbon nanotube (PANI/MWCNTs) nanocomposite thin films have been prepared by Plasma jet polymerization at low frequency on glass substrate with preliminary deposited aluminum electrodes to form Al/PANI-MWCNT/Al surface-type capacitive humidity sensors, the gap between the electrodes about 50 μm and the MWCNTs weight concentration varied between 0, 1, 2, 3, 4%. The diameter of the MWCNTs was in the range of 8-15 nm and the length 10-55 μm. The capacitance-humidity relationships of the sensors were investigated at humidity levels from 35 to 90% RH. The electrical properties showed that the capacity increased with increasing relative humidity, and that the sensitivity of the sensor increases with the increase of the

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Mon Aug 26 2019
Journal Name
Iraqi Journal Of Science
Fabrication of TiO2 sensor using rapid breakdown anodization method to measure pressure, humidity and sense gases at room temperature

Rapid breakdown anodization (RBA) process was used to fabricate TiO2 sensor to measure pressure and humidity and sense gases at room temperature. This chemical process transformed Ti to its oxide (TiO2) as a powder with amorphous phase as X ray diffraction (XRD) technique confirmed.  This oxide consisted from semi spherical nanoparticles and titania nanotubes (TNTs) as Scanning electron microscope (SEM) technique showed.  TiO2 powder was deposited on Ti substrates by using electrophoretic deposition (EPD) method.   Average pressure sensitivity was 0.34 MΩ/bar and hysteresis area was 1.4 MΩ .bar. Resistance of TiO2 decreased exponentially with the increasing of relative

... Show More
Scopus (8)
Crossref (4)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun May 26 2019
Journal Name
Iraqi Journal Of Science
The Influence of Anodization Time With The Electrochemical Cell Design on The Fabrication Process of Porous Silicon Nanostructures

     The influence of anodization time with the electrochemical cell design on the fabrication process of porous silicon (PS) nanostructures based on two electrochemical anodization cells (designed single tank cell and double tank cell) with two anodization times (10 and 30 minutes) was studied. Atomic force Microscopy (AFM) characterization had revealed three types of pores, mesopores, mesopore fill of mesopores, and macropore fill of mesopores were obtained from designed single tank cell with (10 and 30 minutes) of anodization time, whilst for double tank cell has not revealed precise information about the size and type of pores. Pores formation have been further approved by current-voltage (I-V) measurement and pho

... Show More
Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Sep 13 2018
Journal Name
Baghdad Science Journal
Synthesis and Fabrication of In2O3: CdO Nanoparticles for NO2 Gas Sensor

The physical and morphological characteristics of porous silicon (PS) synthesized via gas sensor was assessed by electrochemical etching for a Si wafer in diluted HF acid in water (1:4) at different etching times and different currents. The morphology for PS wafers by AFM show that the average pore diameter varies from 48.63 to 72.54 nm with increasing etching time from 5 to 15min and from 72.54 to 51.37nm with increasing current from 10 to 30 mA. From the study, it was found that the gas sensitivity of In2O3: CdO semiconductor, against NO2 gas, directly correlated to the nanoparticles size, and its sensitivity increases with increasing operating temperature.

Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Sep 11 2018
Journal Name
Iraqi Journal Of Physics
Responsivity of porous silicon for blue visible light with high sensitivity

In this work, porous silicon (PS) are fabricated using electrochemical etching (ECE) process for p-type crystalline silicon (c-Si) wafers of (100) orientation. The structural, morphological and electrical properties of PS synthesized at etching current density of (10, 20, 30) mA/cm2 at constant etching time 10 min are studied. From X-ray diffraction (XRD) measurement, the value of FWHM is in general decreases with increasing current density for p-type porous silicon (p-PS). Atomic force microscope (AFM) showed that for p-PS the average pore diameter decreases at 20 mA. Porous silicon which formed on silicon will be a junction so I-V characteristics have been studied in the dark to calculate ideality factor (n), and saturation current (Is

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Thu Apr 18 2019
Journal Name
Iraqi Journal Of Science
Theoretical Study and Modeling of Porous Silicon Gas Sensors

In this work ,porous silicon(PS) substrate has been used to fabricate a sensor of structures(Al/n PSi/n-Si/Al) using infrared laser in a assisting Etching process at several times (8,16,and24 min) and current density(J) of about(25mA/cm2) on silicon(Si) substrates type of n and tested for CO2 gas molecules and then modulated using MATLAB program. J-V characteristic was analyzed. Different parameter determine such as, Porosity (%), Layer thickness (%) and relative permittivity of the fabricated PS substrate. Several shape and sizes of pores were obtained from the scanning electron microscope device such as pore, rectangular and cylindrical structure for infrared illuminated (IR). The Porosity (%) and Layer thickness (%) take control on se

... Show More
View Publication Preview PDF
Publication Date
Tue Nov 02 2021
Journal Name
Iraqi Journal Of Science
Effects of Annealing on the Structural and Optical Properties of V2O5 Thin Films Prepared by RF Sputtering for Humidity Sensor Application

     In this work, vanadium pentoxide (V2O5) thin films were prepared using rf magnetron sputtering on silicon wafer and glass substrates from V2O5 target at 200 °C substrate temperature, followed by annealing at 400 and 500 °C in air for 2 h. The prepared thin films were examined by X-ray diffraction (XRD), forier transform infra-red spectroscopy (FTIR), UV-visible absorbance, and direct current coductivity to study the effects of annealing temperature on their structural and optical properties. The XRD analysis exhibited that the annealing promoted the highly crystallized V2O5 phase that is highly orientated along the c direction. The crystalline size increased from 22.5 nm to 35.4 nm with increasing the annealing

... Show More
Scopus (2)
Crossref (1)
Scopus Crossref
View Publication Preview PDF