This study investigated the effect of applying an external magnetic field on the characteristics of laser-induced plasma, such as its parameters plasma, magnetization properties, emission line intensities, and plasma coefficients, for plasma induced from zinc oxide: aluminum composite (ZO:AL) at an atomic ratio of 0.3 %. Plasma properties include magnetization and emission line intensities. The excitation was done by a pulsed laser of Nd:YAG with 400 mJ energy at atmospheric pressure. Both the electron temperature and number density were determined with the help of the Stark effect principle and the Boltzmann-Plot method. There was a rise in the amount of (ne) and (Te) that was produced by applying a magnetic field and, on the other hand, using the 532 nm wavelength rather than the fundamental wavelength of a laser. The emission lines in the atmosphere's plasma have an appearance of Lorentzian shape. The 532 nm laser exhibited a decrease in both the Larmor radius and the confinement factor compared with the 1064 nm laser. By applying the magnetic field, the Laser Induced Breakdown Spectroscopy (LIBS) intensities increased by 1.44 times when compared to the emissions before applying the field. In addition, the spectral line intensities improved with the fundamental wavelength compared to the second harmonic frequency as a result of the increase in the extracted materials. This is due to the increase in the absorbance of the laser by the target, as some of these materials are excited, so they act as emission sources, which makes them more detectable.
This work was conducted to study the extraction of eucalyptus oil from natural plants (Eucalyptus camadulensis leaves) by organic solvents. the effects of the main operating parameters were studied; type of solvent (n-hexane and ethanol), time to reach equilibrium, the temperature (45°C to 65°C) for n-hexane and (45°C to 75°C) for ethanol, solvent to solid ratio (5:1 to 8:1 (v/w)), agitation speed (0 to 900 rpm) and the particle size (0.5 to 2.5 cm) of fresh leaves to find the best processing conditions for the achieving maximum oil yield. The concentration of eucalyptus oil in solvent was measured by using UV-spectrophotometer. The results (for n-hexane) showed that the agitation speed of 900 rpm, temperature 65°C with solvent to soli
... Show MoreIn Iraq, there is a limited research work exploring the clinical pharmacists' role from the point of view of other healthcare professionals. To investigate physicians' assessment of clinical pharmacy services at Baghdad hospitals, and compare junior physicians with senior physicians' point of view. The study was conducted in twelve governmental hospitals in Baghdad, Iraq. Data was collected from a sample of two hundred physicians, and through a validated, self-administered questionnaire, which comprised twenty statements in addition to a non-personal information form that precedes the questionnaire The study findings reveal a somewhat positive point of view towards clinical pharmacists' performance in Baghdad h
... Show MoreIn this research, the effect of multi-walled carbon nanotubes (MWCNTs) on the alumina/chromia (Al2O3/Cr2O3) nanocomposites has been investigated. Al2O3/Cr2O3-MWCNTs nanocomposites with variable contents of Cr2O3 and MWCNTs were fabricated using coprecipitation process and followed by spark plasma sintering. XRD analysis revealed a good crystallinity of sintered nanocomposites samples and there was only one phase presence of Al2O3-Cr2O3 solid solution. Density, Vickers microhardness, fracture toughness and fracture strength have been measured in the sintered samples. The results show tha
... Show MoreIndustrial wastewater containing nickel, lead, and copper can be produced by many industries. The reverse osmosis (RO) membrane technologies are very efficient for the treatment of industrial wastewater containing nickel, lead, and copper ions to reduce water consumption and preserving the environment. Synthetic industrial wastewater samples containing Ni(II), Pb(II), and Cu(II) ions at various concentrations (50 to 200 ppm), pressures (1 to 4 bar), temperatures (10 to 40 oC), pH (2 to 5.5), and flow rates (10 to 40 L/hr), were prepared and subjected to treatment by RO system in the laboratory. The results showed that high removal efficiency of the heavy metals could be achieved by RO process (98.5%, 97.5% and 96% for Ni(II),
... Show MoreMonitoring and analysing of the vertical deformations or the settlements of the structures is one of the main research fields in geodetic applications, which is considered a precise periodic measurement, made at different epochs to investigate these deformations on heavy structures.
In this research, the deformation measurements were carried out on one of Baghdad University buildings,” Building of Computers Department” of dimensions (70.0 * 81.3 m.). Due to some cracks observed in their walls, it was necessary to monitor the vertical displacement of this building at some particular monitoring points by constructing a vertical network and measured in different epochs. The first epoch (zero epoch) was carried out in April 2006, the
Terrestrial isopods play an important role in the biodegradation of many wastes which gives agreat importance in the nutrient cycles and ecosystem services , therefore this paper aims to use species
Abstract :- In this paper, silver nanoparticles had been prepared by chemical reduction method. Many tests had been done to it such as UV-Visible spectrophotometer, XRD, AFM&SEM test. finally an attempt had been done to get the optimum condition to control the grain size of silver Nanoparticles by variation the heating period and other parameters which has an effect in silver Nanoparticles synthesis process. in this method we can get a silver nanoparticles in the size range from 52 to 97 nm.
A simple UV spectrophotometric differential derivatization method was performed for the simultaneous quantification of three aromatic amino acids of tryptophan, the polar tyrosine and phenylalanine TRP, TYR and PHE respectively. The avoidance of the time and reagents consuming steps of sample preparation or analyze separation from its bulk of interferences made the approach environmentally benign, sustainable and green. The linear calibration curves of differential second derivative were built at the optimum wavelength for each analyze (218.9, 236.1 and 222.5 nm) for PHE, TRP and TYR respectively. Quantification for each analyze was in the concentration range of (1.0– 45, 0.1–20.0 and 1.0– 50.0 μg/ml) at replicates of (n=3) with a re
... Show More