The current study used extracts from the aloe vera (AV) plant and the hibiscus sabdariffa flower to make Ag-ZnO nanoparticles (NPs) and Ag-ZnO nanocomposites (NCs). Ag/ZnO NCs were compared to Ag NPs and ZnO NPs. They exhibited unique properties against bacteria and fungi that aren't present in either of the individual parts. The Ag-ZnO NCs from AV showed the best performance against E. coli, with an inhibition zone of up to 27 mm, compared to the other samples. The maximum absorbance peaks were observed at 431 nm and 410 nm for Ag NPs, at 374 nm and 377 nm for ZnO NPs and at 384 nm and 391 nm for Ag-ZnO NCs using AV leaf extract and hibiscus sabdariffa flower extract, respectively. Using field emission-scanning electron microscopes (FE-SEM), the green synthesis of the shown NPs and NCs was found. The Ag NPs particle sizes ranged from 16.99 to 26.39 nm for AV and from 13.11 to 29.50 nm for hibiscus sabdariffa flowers, respectively. The particle size of ZnO NPs ranged from 23.04 to 32.58 nm and from 37.99 to 79.59 nm via AV and hibiscus sabdariffa flowers, respectively. Finally, the particle size of the Ag/ZnO nanocomposite ranged from 22.39–40.05 nm and from 59.73–87.05 nm via the AV and hibiscus sabdariffa flowers, respectively.
In context of this paper we prepare high purity powder ZnO nanostructures by chemical method at low temperature solution and study the effect off annealing at high temperature, ZnO nanoparticles have been successfully synthesized by chemical method at 0Cᵒ solution. In this method, suddenly reaction is occurred between zinc acetate solution and sodium hydroxide solution at 0Cᵒ, annealing temperature of powder product surfactant plays an important role in morphological changes. The nanostructures have been characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), differential scanning calorimetry(DSC) and UV-visible .analysis Effect of annealing temperatures on the morphology , structure and optical properties is di
... Show MoreIn this work, the preparation of some new oxazolidine and thiazolidine derivatives has been conducted. This was done over two steps; the first step included the synthesis of Schiff bases A1-A5 in 72-88% yields by the condensation of isonicotinic acid hydrazide and aldehydes. The second step includes the cyclization of derivatives A1-A5 with glycolic acid and thioglycolic acid to obtain the desired products, oxazolidine derivatives B1-B5 (44-60% yields) and thiazolidine derivatives C1-C5 (41-61% yields), respectively. The structure of the prepared compounds was characterized using FT-IR, 1H NMR, and 13C NMR spectroscopy. Some of the produced compounds were tested for antioxidant properties.
Secnidazole was linked with ciprofloxacin as mutual prodrugs to get antibiotics with broader spectrum of activity, improved physicochemical properties and given by single dose to improve patient’s compliance. Furthermore, they provide structural modifications to overcome bacterial adaptation. The structures of the synthesized compounds were confirmed using FT-IR, mass spectrometry, elemental microanalysis (CHNO) and some physiochemical properties. This modification was led to an increase in Log P values for Mutual I (Log P 1.114) and Mutual II (Log P 1.97) compared with its values for Secnidazole (Log P -0.373) and ciprofloxacin (Log P -0.832). The solubility of prodrugs had been determined in different media, Mutual II showed 1
... Show MoreIn the present work polymer electrolytes were formulated using the solvent casting technique. Under special conditions, the electrolyte content was of fixed ratio of polyvinylpyrolidone (PVP): polyacrylonitrile (PAN) (25:75), ethylene carbonate (EC) and propylene carbonate (PC) (1:1) with 10% of potassium iodide (KI) and iodine I2 = 10% by weight of KI. The conductivity was increased with the addition of ZnO nanoparticles. It is also increased with the temperature increase within the range (293 to 343 K). The conductivity reaches maximum value of about (0.0296 S.cm-1) with (0.25 g) ZnO. The results of FTIR for blend electrolytes indicated a significant degree of interaction between the polymer blend (PVP and PAN)
... Show MorePolymer metal complexes of poly ethylene glycol acetal and Ag (I), Cu (II), Ni (II), Mn (II), Co (III) and Hg (II) were prepared from the reaction of PEG with aldehyde derived fromErythro-ascorbic acid (pentulosono-ɣ-lactone-2, 3- enedianisoate). All these compounds were characterized by Thin Layer Chromatography (TLC) and FTIR spectra and aldehyde was also characterized by (U.V-Vis), 1HNMR,13CNMR, and mass spectra. It has been established that, the polymer and its metal complexes showedgood activities against four pathogenic bacteria (Escherichia coli , Klebsiellapneumonae,Staphylococcusaureus, Staphylococcus Albus) and two fungal (Aspergillus Niger,Yeast). The polymer metal complexes showed higher activity than the free polymer.Theorder
... Show MorePolymer metal complexes of poly ethylene glycol acetal and Ag (I), Cu (II), Ni (II), Mn (II), Co (III) and Hg (II) were prepared from the reaction of PEG with aldehyde derived from Erythro-ascorbic acid (pentulosono-ɣ-lactone-2, 3- enedianisoate). All these compounds were characterized by Thin Layer Chromatography (TLC) and FTIR spectra and aldehyde was also characterized by (U.V-Vis), 1HNMR,13CNMR, and mass spectra. It has been established that, the polymer and its metal complexes showed good activities against four pathogenic bacteria (Escherichia coli ,Klebsiellapneumonae, Staphylococcusaureus, Staphylococcus Albus) and two fungal (Aspergillus Niger,Yeast). The polymer metal complexes showed higher activity than the free polymer. The
... Show MoreNew substituted coumarins derivatives were synthesized by using nitration reaction to produce different nitro coumarin isomers which were separated from these isomers by using different solvent, and the reduction of nitro compounds was done to give corresponding amino coumarins. Temperature and reaction time of reaction were very important factors in determining the most productive nitro isotopes. A low temperature for three hours was sufficient to give a high product of a compound 6-nitro coumarin while increasing the temperature for a period of twenty-four hours that gave a high product of 8-nitro-coumarin. The synthesized compounds were confirmed by FT-IR,1 H-NMR, and13 C-NMR spectroscopy and all final compounds were tested for their ant
... Show More