Nitinol (NiTi) is used in many medical applications, including hard tissue replacements, because of its suitable characteristics, including a close elastic modulus to that of bones. Due to the great importance of the mechanical properties of this material in tissue replacements, this work aims to study the hysteresis response in an attempt to explore the ability of the material to remember its previous mechanical state in addition to its ability to withstand stress and to obtain the optimal dimensions and specifications for the manufacturer of NiTi actuators. Stress-strain examination is done in a computational way using a mutable Lagoudas MATLAB code for various coil radii, environment temperatures, and coil lengths. The computational methodology was done by varying the dimensions and the ambient temperature of the simulated NiTi spring actuator. The hysteresis loop is studied by increasing the external stress for a reversible martensitic transformation. The coil radius, spring height, and wire radius affect the spring force and deformations. In the same way, these parameters affect the strain and stress point values. These changes are shown through the martensite and austenite start and finish values. The NiTi hysteresis loop narrows with increasing ambient temperature or initial spring height. At a higher temperature, the force supplied to the actuator must be less for the same deformation; therefore, a higher ambient temperature provides more efficiency for the shape memory devices and a longer lifetime for the actuator.
This study focuses on synthesizing Niobium pentoxide (Nb2O5) thin films on silicon wafers and quartz substrates using DC reactive magnetron sputtering for NO2 gas sensors. The films undergo annealing in ambient air at 800 °C for 1 hr. Various characterization techniques, including X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity measurements, are employed to evaluate the structural, morphological, electrical, and sensing properties of the Nb2O5 thin films. XRD analysis confirms the polycrystalline nature and hexagonal crystal structure of Nb2O5. The optical band gap values of the Nb2O5 thin films demonstrate a decrease from 4.74 to 3.73 eV
... Show MoreAphid Aphis spp (Hemiptera:Aphididae) and Thrips Thrips spp (Thysanoptera: Thripidae) an economically important pests on several crops in the world and Iraq, that transfer many viruses diseases to it. Field studies were conducted to assessment the population density of these insects and susceptibility of six varieties (Barin, Revera, Divela, Rudlph, Alazata and Pleny) to infestation during 2013 spring season. The results were showed that all Potato varieties were infested by Aphis and Thrips on spring plantation but with different percentage. The Divela variety was higher percentage of infestation and high population density of aphid which averaged 1.47 insect/ leaf while in Alazata was the lower population density which averaged 1.02 in
... Show Moreان الرأسمالية ليست بناءً هندسياً يتم انتظامه وفقاً للنظريات الهندسية والمعادلات الرياضية والفنون المعمارية، لأنها ببساطة نظاماً اجتماعياً يقوم على تشكيلة اقتصادية معينة، والأخيرة تقوم على مستوى معين لتطور قوى الانتاج (التكنولوجيا) والذي يقوم عليه مستوىً معين لعلاقات الإنتاج، ويقوم على التشكيلة الاقتصادية/ نمط الإنتاج نظاماً سياسياً، هو جزء من البناء الفوقي، ولأنها نظاماً اجتماعياً بالمواصفات انفة
... Show MoreThis study reports the fabrication of tin oxide (SnO2) thin films using pulsed laser deposition (PLD). The effect of 60Co (300, 900, and 1200 Gy) gamma radiation on the structural, morphological, and optical features is systematically demonstrated using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and ultraviolet-visible light analysis (UV-Vis), respectively In XRD tests, the size of the crystallites decreased from 45.5 to 40.8 nm for the control samples and from 1200 Gy to 60Co for the irradiated samples. Using FESEM analysis, the particle diameter revealed a similar trend to that attained using XRD; in particular, the average diameters were 93.8 and
... Show MoreNumerical simulation of charge density produced in plasma actuators is dependent upon the development of models dealing with electrical properties. The main aim of this work is to investigate the characteristics surface charge density and space charge density of DBD plasma actuator. A simple design of surface dielectric barrier discharge plasma actuator is used in the study. The discharge gas was N2:H2 mixture with applied voltage equal to 1.5 kV. A theoretical plasma model is used to establish the charge density details. Results show that surface charge density increased in value and spread in width alone the exposed electrode as the voltage increased and reached to the amplitude value.
The aim of this research is controlling the amount of the robotic hand catching force using the artificial muscle wire as an actuator to achieve the desired response of the robotic hand in order to catch different things without destroying or dropping them; where the process is to be similar to that of human hand catching way. The proper selection of the amount of the catching force is achieved through out simulation using the fuzzy control technique. The mechanism of the arrangement of the muscle wires is proposed to achieve good force selections. The results indicate the feasibility of using this proposed technique which mimics human reasoning where as the weight of the caught peace increases, the force increases also with approximatel
... Show More