Nitinol (NiTi) is used in many medical applications, including hard tissue replacements, because of its suitable characteristics, including a close elastic modulus to that of bones. Due to the great importance of the mechanical properties of this material in tissue replacements, this work aims to study the hysteresis response in an attempt to explore the ability of the material to remember its previous mechanical state in addition to its ability to withstand stress and to obtain the optimal dimensions and specifications for the manufacturer of NiTi actuators. Stress-strain examination is done in a computational way using a mutable Lagoudas MATLAB code for various coil radii, environment temperatures, and coil lengths. The computational methodology was done by varying the dimensions and the ambient temperature of the simulated NiTi spring actuator. The hysteresis loop is studied by increasing the external stress for a reversible martensitic transformation. The coil radius, spring height, and wire radius affect the spring force and deformations. In the same way, these parameters affect the strain and stress point values. These changes are shown through the martensite and austenite start and finish values. The NiTi hysteresis loop narrows with increasing ambient temperature or initial spring height. At a higher temperature, the force supplied to the actuator must be less for the same deformation; therefore, a higher ambient temperature provides more efficiency for the shape memory devices and a longer lifetime for the actuator.
ZnS:MnP2+P nanoparticles were prepared by a simple microwave irradiation method under mild condition. The starting materials for the synthesis of ZnS:MnP 2+P quantum dots were zinc acetate as zinc source, thioacetamide as a sulfur source, manganese chloride as manganese source (R & M Chemical) and ethylene glycol as a solvent. All chemicals were analytical grade products and used without further purification. The quantum dots of ZnS:MnP 2+P with cubic structure were characterized by X-ray powder diffraction (XRD), the morphology of the film is seen by scanning electron microscopy (SEM) also by field effect scanning electron microscopy (FESEM). The composition of the samples is analysed by EDS. UV-Visible absorption spectroscopy analysis
... Show MoreFunctionally graded materials (FGMs), with ceramic –ceramic constituents are fabricated using powder technology techniques. In this work three different sets of FGMs samples were designed in to 3 layers, 5 layers and 7 layers. The ceramic constituents were represented by hard ferrite (Barium ferrite) and soft ferrite (lithium ferrite). All samples sintered at constant temperature at 1100oC for 2 hrs. and characterized by FESEM. Some physical properties were measured for fabricated FGMs include apparent density, bulk density, porosity, shrinkage and hardness. The results indicated that the density increase with the increase the number of layer. Lateral shrinkage is one of the important parameter f
... Show MoreThe central marshes are one of the most important wetlands/ecosystems in the southern area of Iraq. This study evaluates the bed soil's mechanical, physical, and chemical properties at certain southern Iraqi central marshes sites. This was conducted to investigate their types and suitability for enhancing the agricultural reality of most field crops and for construction purposes. Soil samples were collected from 15 sites at 10-100 cm depth. Hence, numerous parameters were determined: index properties, unconfined compressive strength, direct shear strength, consolidation, texture, and sieve analysis, water content, specific gravity, dry density, permeability, pH, total soluble salts (TSS), organic materials (OM) and total
... Show MoreA pioneering idea for increasing the thermal performance of heat transfer fluids was to use ultrafine solid particles suspended in the base fluid. Nanofluids, synthesized by mixing solid nanometer sized particles at low concentrations with the base fluid, were used as a new heat transfer fluid and developed a remarkable effect on the thermophysical properties and heat transfer coefficient. For any nanofluid to be usable in heat transfer applications, the main concern is its long-term stability. The aim of this research is to investigate the effect of using four different surfactants (sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate (SDS), cetyl trimethylammonium bromide (CTAB), and gum Arabic (GA)), each with three different
... Show MoreIn this study, Cr−Mo−N thin films with different Mo contents were synthesised via closed field unbalanced magnetron sputtering ion plating. The effects of Mo content on the microstructure, chemical bonding state, and optical properties of the prepared films were investigated by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy, and ultraviolet-visible spectrophotometry. XRD results determined the face centered cubic (fcc) structure of pure CrN film. The incorporation of molybdenum (Mo) in the CrN matrix was confirmed by both XRD and XPS analyses. The CrMoN coatings demonstrate various polycrystalline phases including CrN, γ-Mo2N, Cr with oxides layers of MoO3, CrO3
... Show MoreParasitic diseases can affect infection with COVID-19 obviously, as protective agents, or by reducing severity of this viral infection. This current review mentions the common symptoms between human parasites and symptoms of COVID-19, and explains the mechanism actions of parasites, which may prevent or reduce severity of this viral infection. Pre-existing parasitic infections provide prohibition against pathogenicity of COVID-19, by altering the balance of gut microbiota that can vary the immune response to this virus infection.
This research discloses the synthesis of various polyester resins, the polyesters containing homoring aromatic and others heterocyclic were synthesized by the condensation polymerization of suitable monomers (which are containing variety function groups in different structures) with phthalic anhydride. The main objective is synthesis of new polyester with keeping a reasonable electrical insulating behavior. The structural of polymer was characterized by Fourier Transform infra-red spectroscopy FTIR and HNMR. The dielectric constant (real ε' and imaginary parts ε") and AC conductivity (σAC) for all the polyester samples are studied by varying the frequency (30, 50, 70, 90, 120, 300, 500Hz and 1KHZ) at 25⁰ C. Indeed, study of the electri
... Show MoreA new two series of liquid crystalline Schiff bases containing thiazole moiety with different length of alkoxy spacer were synthesized, and the relation between the spacer length and the liquid crystalline behavior was investigated. The molecular structures of these compounds were performed by elemental analysis and FTIR, 1HNMR spectroscopy. The liquid crystalline properties were examined by hot stage optical polarizing microscopy (OPM) and differential scanning calorimetry (DSC). All compouns of the two series display liquid crystalline nematic mesophase. The liquid crystalline behaviour has been analyzed in terms of structural property relationship
In this work, Pure and Cu: doped titanium dioxide nano-powder was prepared through a solid-state method. the dopant concentration [Cu/TiO2 in atomic percentage (wt%)] is derived from 0 to 7 wt.%. structural properties of the samples performed with XRD revealed all nanopowders are of titanium dioxide having polycrystalline nature. Physical and Morphological studies were conducted using a scanning electronic microscope SEM test instrument to confirm the grain size and texture. The other properties of samples were examined using an optical microscope, Lee's Disc, Shore D hardness instrument, Fourier-transform infrared spectroscopy (FTIR), and Energy-dispersive X-ray spectroscopy (EDX). Results showed that the thermal conductivity
... Show MoreIn this research , the structural and optical properties of pure of cadmium oxide, pure (CdO) were studided thin films in a thermal evaporation in a vacuum depositing metal cadmium pure rules of the glass at room temperature (300K) and thickness (300 ± 20nm) and the time of deposition (1.25sec) was oxidation of thin films cadmium (Cd) record temperature (673k) for a period of one hour to the presence of air optical energy gap for direct electronic transitions were calculated (permitted) as a function of absorption coefficient and permeability and reversibility by recording the spectrum absorbance and permeability of the membrane the record
... Show More